IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i4d10.1007_s13198-021-01518-9.html
   My bibliography  Save this article

A Framework for disaster management using fuzzy bat clustering in fog computing

Author

Listed:
  • T. Raja Sree

    (SRM Institute of Science and Technology, Kattankulathur)

Abstract

Disaster monitoring and prediction is one of the most important stages in disaster management. Critical crowdsourced Internet of Things data collected from various geographic resources (such as sensors, mobile devices, vehicles, humans, etc.) are evaluated and analyzed to effectively predict natural disasters. Cloud computing is a widely used technology for analyzing crowdsourced data in specific geographic areas. However, the time it takes to analyze these data can be long, huge end-end delay, and Quality of Service degradation. It also increases the loss of a large number of people during the disaster. Hence, fog computing is used to analyze these critical crowd sourced data, that is, for latency sensitive applications. This paper uses an efficient FBC algorithm in the fog computing platform, and proposes a fog-based disaster monitoring framework. The terminal device at the end user layer does not perform any processing or FBC clustering on the data. On the contrary, the fog node in the fog layer and the cloud server in the cloud computing layer perform FBC clustering, which helps to predict disasters in time. The proposed scheme is evaluated in terms of latency, response time and bandwidth, and the proposed scheme performs better than the centralized and distributed schemes.

Suggested Citation

  • T. Raja Sree, 2022. "A Framework for disaster management using fuzzy bat clustering in fog computing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1623-1636, August.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01518-9
    DOI: 10.1007/s13198-021-01518-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01518-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01518-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01518-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.