IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i2d10.1007_s13198-021-01346-x.html
   My bibliography  Save this article

Optimized clustering using soft computing approaches in wireless sensor networks: research dimensions and contributions

Author

Listed:
  • Richa Sharma

    (AmityUniversity)

Abstract

Presently, Wireless Sensor Network (WSN) is considered as the most prominent technologies employed in commercial as well as in industrial sector. The WSN comprises of battery-operated nodes that are used to monitor the surroundings in order to keep record of the physical phenomenon like temperature, pressure, position, vibration, humidity, sound etc. These nodes can be utilized in several real-time application domains to perform different tasks like target tracking, home surveillance, pollution monitoring, structural monitoring etc. Depending on the type of nodes deployment and the application areas, WSNs can be exploited underground, underwater, terrestrial, wearable or environment embedded. Firstly, this paper categorizes research dimensions in wireless sensor networks primary and secondary research domains and the research contributions in those fields. Secondly, it discusses different soft computing-based clustering schemes from past two decades to deal with energy conservation issue in sensor networks. This paper provides a clear insight to the beginners of this field by covering literature review from 2008 to 2020.

Suggested Citation

  • Richa Sharma, 2022. "Optimized clustering using soft computing approaches in wireless sensor networks: research dimensions and contributions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 557-570, April.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01346-x
    DOI: 10.1007/s13198-021-01346-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01346-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01346-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01346-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.