IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i1d10.1007_s13198-021-01459-3.html
   My bibliography  Save this article

Study on non-linear planning model of green building energy consumption under multi-objective optimization

Author

Listed:
  • Miao Fan

    (Zheng Zhou Railway Vocational and Technical College)

  • Danna Su

    (Zheng Zhou Railway Vocational and Technical College)

  • Mohammed Wasim Bhatt

    (Central University of Punjab)

  • Adarsh Mangal

    (Engineering College Ajmer)

Abstract

The research on economic balance and balanced competition is the initial concept that has reflected the idea of multi-objective programming which is usually encountered in the modeling of green buildings. This concept has laid the base in building a multi-objective optimization problem, for the establishment of model and calculation. By establishing a nonlinear planning model for determining the control target value of the project and by calculating the results, it is assumed that the sample is estimated as a very large likelihood, with consistency and non-biasing. In this paper several variables are analyzed and focus has been paid to weather conditions by making several interpretations: If the weather is good, the $$p_{it}$$ p it = 1, the engine can successfully complete the project amount of the plan; if constructed, when the weather is not conducive to engineering construction, then pit

Suggested Citation

  • Miao Fan & Danna Su & Mohammed Wasim Bhatt & Adarsh Mangal, 2022. "Study on non-linear planning model of green building energy consumption under multi-objective optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 437-443, March.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01459-3
    DOI: 10.1007/s13198-021-01459-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01459-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01459-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapil Jairath & Navdeep Singh & Vishal Jagota & Mohammad Shabaz, 2021. "Compact Ultrawide Band Metamaterial-Inspired Split Ring Resonator Structure Loaded Band Notched Antenna," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, May.
    2. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    3. Li, Hongmin & Wang, Jianzhou & Lu, Haiyan & Guo, Zhenhai, 2018. "Research and application of a combined model based on variable weight for short term wind speed forecasting," Renewable Energy, Elsevier, vol. 116(PA), pages 669-684.
    4. Lesage-Landry, Antoine & Taylor, Joshua A., 2020. "A second-order cone model of transmission planning with alternating and direct current lines," European Journal of Operational Research, Elsevier, vol. 281(1), pages 174-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    2. Wang, Di & Shen, Ye & Zhao, Yueying & He, Wei & Liu, Xue & Qian, Xiangyan & Lv, Tao, 2020. "Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework," Resources Policy, Elsevier, vol. 68(C).
    3. Arber Hoti & Lulzim Krasniqi, 2022. "Impact of international financial reporting standards adoption on the perception of investors to invest in small-to-medium enterprise adopting transparency in disclosure policies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 506-515, March.
    4. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    5. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2020. "Building Thermo-Modernisation Solution Based on the Multi-Objective Optimisation Method," Energies, MDPI, vol. 13(6), pages 1-19, March.
    6. Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
    7. Tae-Hyoung Kim & Young-Sun Jeong, 2018. "Analysis of Energy-Related Greenhouse Gas Emission in the Korea’s Building Sector: Use National Energy Statistics," Energies, MDPI, vol. 11(4), pages 1-17, April.
    8. Mingcan Li & Hanbin Xiao & Lin Pan & Chengjun Xu, 2019. "Study of Generalized Interaction Wake Models Systems with ELM Variation for Off-Shore Wind Farms," Energies, MDPI, vol. 12(5), pages 1-32, March.
    9. Xiaofei Huang & Vishal Jagota & Einer Espinoza-Muñoz & Judith Flores-Albornoz, 2022. "Tourist hot spots prediction model based on optimized neural network algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 63-71, March.
    10. Lee-Yong Sung & Jonghoon Ahn, 2020. "Comparative Analyses of Energy Efficiency between on-Demand and Predictive Controls for Buildings’ Indoor Thermal Environment," Energies, MDPI, vol. 13(5), pages 1-15, March.
    11. Yukun Wang & Aiying Zhao & Xiaoxue Wei & Ranran Li, 2023. "A Novel Ensemble Model Based on an Advanced Optimization Algorithm for Wind Speed Forecasting," Energies, MDPI, vol. 16(14), pages 1-19, July.
    12. Kangji Li & Wenping Xue & Hanping Mao & Xu Chen & Hui Jiang & Gang Tan, 2019. "Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics," Energies, MDPI, vol. 12(15), pages 1-19, July.
    13. Jiang, Ping & Wang, Biao & Li, Hongmin & Lu, Haiyan, 2019. "Modeling for chaotic time series based on linear and nonlinear framework: Application to wind speed forecasting," Energy, Elsevier, vol. 173(C), pages 468-482.
    14. Keke Wang & Dongxiao Niu & Min Yu & Yi Liang & Xiaolong Yang & Jing Wu & Xiaomin Xu, 2021. "Analysis and Countermeasures of China’s Green Electric Power Development," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    15. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    16. Emeksiz, Cem & Tan, Mustafa, 2022. "Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)," Energy, Elsevier, vol. 249(C).
    17. Zhou, Qingguo & Wang, Chen & Zhang, Gaofeng, 2019. "Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems," Applied Energy, Elsevier, vol. 250(C), pages 1559-1580.
    18. Wang, Shuai & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2021. "A novel combined model for wind speed prediction – Combination of linear model, shallow neural networks, and deep learning approaches," Energy, Elsevier, vol. 234(C).
    19. Liu, Hui & Chen, Chao, 2019. "Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction," Applied Energy, Elsevier, vol. 254(C).
    20. Nien-Che Yang & Yan-Lin Zeng & Tsai-Hsiang Chen, 2021. "Assessment of Voltage Imbalance Improvement and Power Loss Reduction in Residential Distribution Systems in Taiwan," Mathematics, MDPI, vol. 9(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01459-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.