IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i1d10.1007_s13198-021-01272-y.html
   My bibliography  Save this article

Weather and population based forecasting of novel COVID-19 using deep learning approaches

Author

Listed:
  • A. Ronald Doni

    (Sathyabama Institute of Science and Technology)

  • T. Sasi Praba

    (Sathyabama Institute of Science and Technology)

  • S. Murugan

    (Sathyabama Institute of Science and Technology)

Abstract

The spread of novel corona virus across the globe has a significant impact on various stake holders and posting a major challenge to the research community. Government has taken several measures for maintaining social distance and containment of disease, but still it is not a sufficient for the developing countries like India where the level of understanding the issue is deprived and hence it is a major challenge to the Health Care professionals. Therefore, it is mandatory that a prediction of the number of possible cases enables the preparedness of the Government and the Hospitals in resolving the issues and to take measures in controlling the spread of the disease Series. Deep learning model has been built by considering the features of weather and COVID-19 data (recovered, infected and deceased) for predicting the number of cases expected in India. The model is built on Concurrent Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional RNN (BRNN), Long Short-Term Memory (LSTM) and Bidirectional LSTM (BLSTM) based on the daily weather and COVID-19 data collected from Indian subcontinent. The results revealed that the algorithm BRNN yields a better prediction model when compared with the other models.

Suggested Citation

  • A. Ronald Doni & T. Sasi Praba & S. Murugan, 2022. "Weather and population based forecasting of novel COVID-19 using deep learning approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 100-110, March.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01272-y
    DOI: 10.1007/s13198-021-01272-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01272-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01272-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01272-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.