IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v12y2021i5d10.1007_s13198-021-01186-9.html
   My bibliography  Save this article

Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environment

Author

Listed:
  • Dilip Mandloi

    (National Institute of Technology Patna)

  • Rajeev Arya

    (National Institute of Technology Patna)

  • Ajit K. Verma

    (Western Norway University of Applied Sciences)

Abstract

Finding a safe and optimum path from the source node to the target node, while preventing collisions with environmental obstacles, is always a challenging task. This task becomes even more complicated when the application area includes Unmanned Aerial Vehicle (UAV). This is because UAV follows an aerial path to reach the target node from the source node and the aerial paths are defined in 3D space. A* (A-star) algorithm is the path planning strategy of choice to solve path planning problem in such scenarios because of its simplicity in implementation and promise of optimality. However, A* algorithm guarantees to find the shortest path on graphs but does not guarantee to find the shortest path in a real continuous environment. Theta* (Theta-star) and Lazy Theta* (Lazy Theta-star) algorithms are variants of the A* algorithm that can overcome this shortcoming of the A* algorithm at the cost of an increase in computational time. In this research work, a comparative analysis of A-star, Theta-star, and Lazy Theta-star path planning strategies is presented in a 3D environment. The ability of these algorithms is tested in 2D and 3D scenarios with distinct dimensions and obstacle complexity. To present comparative performance analysis of considered algorithms two performance metrices are used namely computational time which is a measure of time taken to generate the path and path length which represents the length of the generated path.

Suggested Citation

  • Dilip Mandloi & Rajeev Arya & Ajit K. Verma, 2021. "Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 990-1000, October.
  • Handle: RePEc:spr:ijsaem:v:12:y:2021:i:5:d:10.1007_s13198-021-01186-9
    DOI: 10.1007/s13198-021-01186-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01186-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01186-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prashant Pandey & Anupam Shukla & Ritu Tiwari, 2018. "Three-dimensional path planning for unmanned aerial vehicles using glowworm swarm optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 836-852, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merkert, Rico & Bushell, James, 2020. "Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control," Journal of Air Transport Management, Elsevier, vol. 89(C).
    2. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "A systematic literature review of the factors influencing the adoption of autonomous driving," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1065-1082, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:5:d:10.1007_s13198-021-01186-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.