Author
Abstract
Huge amount of unstructured data is posted on the cloud from various sources for the purpose of feedback and reviews. These review needs require classification for many a reasons and sentiment classification is one of them. Sentiment classification of these reviews quite difficult as they are arriving from many sources. A robust classifier is needed to deal with different data distributions. Traditional supervised machine learning approaches not works well as they require retraining when domain is changed. Deep learning techniques perform well to handle these situations, but they are more data hungry and computationally expensive. Transfer learning is a feature in the cross-domain sentiment classification where features are transferred from one domain to another without any training. Moreover, transfer learning allows the domains, tasks, and distributions used in training and testing to be different. Therefor transfer learning mechanism is required to transfer the sentiment features across the domains. This paper presents a transfer learning approach using pretrained language model, ELMO which helps in transferring sentiment features across domains. This model has been tested on text reviews posted on twitter data set and compared with deep learning methods with and without pretraining process, also our model delivers promising results. This model permits flexibility to plug and play parameters with target models with easier domain adaptivity and transfer sentiment features. Also, model enables sentiment classifiers by using the transferred features from an already trained domain and reuse the sentiment features by saving the time and training cost.
Suggested Citation
B. Vamshi Krishna & Ajeet Kumar Pandey & A. P. Siva Kumar, 2021.
"Universally domain adaptive algorithm for sentiment classification using transfer learning approach,"
International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 542-552, June.
Handle:
RePEc:spr:ijsaem:v:12:y:2021:i:3:d:10.1007_s13198-021-01113-y
DOI: 10.1007/s13198-021-01113-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:3:d:10.1007_s13198-021-01113-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.