IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i4d10.1007_s13198-019-00882-x.html
   My bibliography  Save this article

Deep feature representation and ball-tree for face sketch recognition

Author

Listed:
  • Weiguo Wan

    (Chonbuk National University)

  • Hyo Jong Lee

    (Chonbuk National University
    Chonbuk National University)

Abstract

Forensic face sketch-photo recognition attracts considerable interest in the law enforcement agencies. This paper proposes a new face sketch-photo recognition method based on the VGG deep feature and ball-tree searching algorithm. In this paper, the recognition performances by different feature layers of pretrained VGG-Face model are explored. In addition, to accelerate the matching speed, the ball-tree algorithm is adopted to search the nearest neighbors of query sketches from gallery photos. The experimental results on CUFS and IIIT-D datasets demonstrate the superiority of the proposed method compared with existing algorithms.

Suggested Citation

  • Weiguo Wan & Hyo Jong Lee, 2020. "Deep feature representation and ball-tree for face sketch recognition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(4), pages 818-823, August.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:4:d:10.1007_s13198-019-00882-x
    DOI: 10.1007/s13198-019-00882-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00882-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00882-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. S. Bhadauria & Indrajeet Kumar & H. S. Bhadauria & R. B. Patel, 2021. "Hemorrhage detection using edge-based contour with fuzzy clustering from brain computed tomography images," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1296-1307, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:4:d:10.1007_s13198-019-00882-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.