IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i2d10.1007_s13198-020-00948-1.html
   My bibliography  Save this article

Presentation attack detection for iris recognition using deep learning

Author

Listed:
  • Shefali Arora

    (Netaji Subhas Institute of Technology)

  • M. P. S. Bhatia

    (Netaji Subhas Institute of Technology)

Abstract

Iris recognition is used in various applications to identify a person. However, presentation attacks are making such systems vulnerable. Intruders can impersonate an individual to get entry into a system. In this paper, we have focused on print attacks, in which an intruder can use various techniques like printing of iris photographs to present to the sensor. Experiments conducted on the IIIT-WVU iris dataset show that print attack images of live iris images, use of contact lenses and conjunction of both can play a significant role in deceiving the iris recognition systems. The paper makes use of deep Convolutional Neural Networks to detect such spoofing techniques with superior results as compared to the existing state-of-the-art techniques.

Suggested Citation

  • Shefali Arora & M. P. S. Bhatia, 2020. "Presentation attack detection for iris recognition using deep learning," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 232-238, July.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-020-00948-1
    DOI: 10.1007/s13198-020-00948-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-020-00948-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-020-00948-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. S. Bhadauria & Indrajeet Kumar & H. S. Bhadauria & R. B. Patel, 2021. "Hemorrhage detection using edge-based contour with fuzzy clustering from brain computed tomography images," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1296-1307, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-020-00948-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.