IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i2d10.1007_s13198-019-00938-y.html
   My bibliography  Save this article

Comparative analysis of traditional and fuzzy FMECA approach for criticality analysis of conventional lathe machine

Author

Listed:
  • Gajanand Gupta

    (Lovely Professional University)

  • Rajesh P. Mishra

    (Birla Institute of Technology and Sciences)

Abstract

Criticality analysis is a technique for the assessment of criticality rating for every constitutive part. Failure mode effect and criticality analysis (FMECA) are broadly utilized for characterizing, distinguishing and dispensing with potential failures from system, design, or process for the criticality analysis. The determination of the critical ranking of failure modes for criticality analysis is a vital issue of FMECA. The traditional method of FMECA determines the critical ranking of failure modes using the risk priority numbers, which is the product of evaluation criteria like the occurrence, severity and detection of each failure mode but it may not be realistic in some applications. The practical applications reveal that the criticality analysis using traditional FMECA has been considerably criticized for several reasons. In this paper, first, a detailed FMEA to find out the various failure modes of each component of a conventional lathe machine is performed and thereafter, the Fuzzy FMECA approach is used to perform the criticality analysis. A comparative analysis of fuzzy FMECA with traditional FMECA is also done to find out the most superior approach for the criticality analysis. It was concluded that the fuzzy FMECA approach is the most superior approach for the criticality analysis of a system.

Suggested Citation

  • Gajanand Gupta & Rajesh P. Mishra, 2020. "Comparative analysis of traditional and fuzzy FMECA approach for criticality analysis of conventional lathe machine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 379-386, July.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-019-00938-y
    DOI: 10.1007/s13198-019-00938-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00938-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00938-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carmignani, Gionata, 2009. "An integrated structural framework to cost-based FMECA: The priority-cost FMECA," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 861-871.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arpit Sharma & Gajanand Gupta, 2023. "Comparative analysis of conventional and fuzzy FMECA approach for criticality analysis of a vertical roller mill," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1395-1420, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    2. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    3. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    5. Kim, Kyungmee O. & Zuo, Ming J., 2018. "Optimal allocation of reliability improvement target based on the failure risk and improvement cost," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 104-110.
    6. Carpitella, Silvia & Certa, Antonella & Izquierdo, Joaquín & La Fata, Concetta Manuela, 2018. "A combined multi-criteria approach to support FMECA analyses: A real-world case," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 394-402.
    7. Virgo Sulakatko & Frank U. Vogdt, 2018. "Construction Process Technical Impact Factors on Degradation of the External Thermal Insulation Composite System," Sustainability, MDPI, vol. 10(11), pages 1-26, October.
    8. Ilyas Mzougui & Zoubir El Felsoufi, 2021. "A modified method to improve failure analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 231-244, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-019-00938-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.