IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i2d10.1007_s13198-019-00866-x.html
   My bibliography  Save this article

An intelligent lung tumor diagnosis system using whale optimization algorithm and support vector machine

Author

Listed:
  • Surbhi Vijh

    (Amity University)

  • Deepak Gaur

    (Amity University)

  • Sushil Kumar

    (National Institute of Technology Warangal)

Abstract

Medical image processing technique are widely used for detection of tumor to increase the survival rate of patients. The development of computer-aided diagnosis system shows improvement in observing the medical image and determining the treatment stages. The earlier detection of tumor reduces the mortality of lung cancer by increasing the probability of successful treatment. In this paper, the intelligent lung tumor diagnosis system is developed using various image processing technique. The simulated steps involve image enhancement, image segmentation, post-processing, feature extraction, feature selection and classification using support vector machine (SVM) kernel. Gray level co-occurrence matrix method is used for extracting the 19 texture and statistical features of lung computed tomography (CT) image. Whale optimization algorithm (WOA) is considered for selection of best prominent feature subset. The contribution provided in this paper is the development of WOA_SVM to automate the aided diagnosis system for determining whether the lung CT image is normal or abnormal. An improved technique is developed using whale optimization algorithm for optimal feature selection to obtain accurate results and constructing the robust model. The performance of proposed methodology is evaluated using accuracy, sensitivity and specificity and obtained as 95%, 100% and 92% using radial bias function support vector kernel.

Suggested Citation

  • Surbhi Vijh & Deepak Gaur & Sushil Kumar, 2020. "An intelligent lung tumor diagnosis system using whale optimization algorithm and support vector machine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 374-384, April.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-019-00866-x
    DOI: 10.1007/s13198-019-00866-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00866-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00866-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amitkumar Patil & Gunjan Soni & Anuj Prakash, 2022. "A BMFO-KNN based intelligent fault detection approach for reciprocating compressor," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 797-809, June.
    2. Sohail Saif & Nahal Yasmin & Suparna Biswas, 2023. "Feature engineering based performance analysis of ML and DL algorithms for Botnet attack detection in IoMT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 512-522, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:2:d:10.1007_s13198-019-00866-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.