IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v10y2019i4d10.1007_s13198-019-00807-8.html
   My bibliography  Save this article

Text analytics based severity prediction of software bugs for apache projects

Author

Listed:
  • Arvinder Kaur

    (Guru Gobind Singh Indraprastha University)

  • Shubhra Goyal Jindal

    (Guru Gobind Singh Indraprastha University)

Abstract

Severity i.e impact, extent and effect on software is a decisive attribute which decides how instantly the bug should be fixed. Predicting the severity of software bugs is important to improve the bug triaging and resolution process. To reduce the effort and time required in manual assessment of severity of newly reported bugs, many techniques and methods are used in past researches. To help software developers to utilize their resources efficiently, this study evaluates a number of machine learning techniques for predicting the severity of software bugs at system and component level. The techniques are evaluated on thirteen apache projects automatically extracted using the Bug Report Collection System tool. Severity is predicted based on the most frequent terms extracted from the summary of bugs using text mining. Performance metrics such as precision, recall and accuracy are used to interpret the results obtained from various techniques. The result of the study advocates that Boosting (an ensemble learner) technique outperforms other machine learning techniques such as Bayesian learners, decision tree, support vector machine applied in previous researches.

Suggested Citation

  • Arvinder Kaur & Shubhra Goyal Jindal, 2019. "Text analytics based severity prediction of software bugs for apache projects," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 765-782, August.
  • Handle: RePEc:spr:ijsaem:v:10:y:2019:i:4:d:10.1007_s13198-019-00807-8
    DOI: 10.1007/s13198-019-00807-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00807-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00807-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anjali Goyal & Neetu Sardana, 2019. "An empirical study of non-reproducible bugs," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1186-1220, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:4:d:10.1007_s13198-019-00807-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.