IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v30y2021i6d10.1007_s10726-020-09666-2.html
   My bibliography  Save this article

A Voting Mechanism Designed for Talent Shows in Mass Media: Weighted Preference of Group Decision Makers in Social Networks Using Fuzzy Measures and Choquet Integral

Author

Listed:
  • Mei Cai

    (Nanjing University of Information Science and Technology)

  • Li Yan

    (Université du Québec en Outaouais
    Xidian University)

  • Zaiwu Gong

    (Nanjing University of Information Science and Technology)

  • Guo Wei

    (University of North Carolina at Pembroke)

Abstract

As the development of social networks tends to shape people’s view about choices, decision making theories are challenged by numerous unprecedented difficulties, from both the theories and practice. One hot topic is how to design a voting mechanism for talent shows in mass media that not only attracts public attention but also reflects an objective and fair principle. Weighted voting, where the voting power of a representative is proportional to the population in his or her district, has been widely adopted in legislative selections and talent show competitions. However, weighted voting system may cause disenfranchisement of some representatives and reduce the entertainment and interest of talent shows because of the ignorance of complex interactions among the representatives. In this paper, possible interactions among representatives are analyzed by investigating the associated social networks and subsequently some fuzzy measures are utilized to quantify these interactions. Specifically, the weights determination model is adopted in this situation for defining fuzzy measures to avoid the disenfranchisement, and a multiple-group hierarchy decision model is developed to solve social network group decision making problems where the Choquet integral is employed to reduce the impact from synergy and redundancy between representatives. Moreover, a voting mechanism for talent shows in mass media is provided. Finally, an illustrative example, and a close look at the current algorithmic issues and future trends from different angles are provided.

Suggested Citation

  • Mei Cai & Li Yan & Zaiwu Gong & Guo Wei, 2021. "A Voting Mechanism Designed for Talent Shows in Mass Media: Weighted Preference of Group Decision Makers in Social Networks Using Fuzzy Measures and Choquet Integral," Group Decision and Negotiation, Springer, vol. 30(6), pages 1261-1284, December.
  • Handle: RePEc:spr:grdene:v:30:y:2021:i:6:d:10.1007_s10726-020-09666-2
    DOI: 10.1007/s10726-020-09666-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-020-09666-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-020-09666-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    2. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    3. Marichal, Jean-Luc, 2002. "Entropy of discrete Choquet capacities," European Journal of Operational Research, Elsevier, vol. 137(3), pages 612-624, March.
    4. Marichal, Jean-Luc & Roubens, Marc, 2000. "Determination of weights of interacting criteria from a reference set," European Journal of Operational Research, Elsevier, vol. 124(3), pages 641-650, August.
    5. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.
    6. Umberto Cherubini & Giovanni Della Lunga, 2001. "Liquidity and credit risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 79-95.
    7. Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.
    8. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    9. Reed, Markum, 2015. "Social network influence on consistent choice," Journal of choice modelling, Elsevier, vol. 17(C), pages 28-38.
    10. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    2. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    3. Mei Cai & Stephen M. Marson, 2021. "A regional Natech risk assessment based on a Natech-prone facility network for dependent events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2155-2174, July.
    4. Pelegrina, Guilherme Dean & Duarte, Leonardo Tomazeli & Grabisch, Michel & Romano, João Marcos Travassos, 2020. "The multilinear model in multicriteria decision making: The case of 2-additive capacities and contributions to parameter identification," European Journal of Operational Research, Elsevier, vol. 282(3), pages 945-956.
    5. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    6. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    7. Sujoy Mukerji & Jean-Marc Tallon & EUREQua & CNRS - Universite Paris I., 2003. "An overview of economic applications of David Schmeidler`s models of decision making under uncertainty," Economics Series Working Papers 165, University of Oxford, Department of Economics.
    8. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    9. Michel Grabisch & Christophe Labreuche, 2002. "The symmetric and asymmetric Choquet integrals on finite spaces for decision making," Statistical Papers, Springer, vol. 43(1), pages 37-52, January.
    10. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2011. "A representation of preferences by the Choquet integral with respect to a 2-additive capacity," Theory and Decision, Springer, vol. 71(3), pages 297-324, September.
    11. Christophe Labreuche, 2018. "An axiomatization of the Choquet integral in the context of multiple criteria decision making without any commensurability assumption," Annals of Operations Research, Springer, vol. 271(2), pages 701-735, December.
    12. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    13. Branke, Juergen & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman & Zielniewicz, Piotr, 2016. "Using Choquet integral as preference model in interactive evolutionary multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 884-901.
    14. Mehmet Pinar, 2022. "Choquet-Integral Aggregation Method to Aggregate Social Indicators to Account for Interactions: An Application to the Human Development Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 159(1), pages 1-53, January.
    15. Liginlal, Divakaran & Ow, Terence T., 2005. "On policy capturing with fuzzy measures," European Journal of Operational Research, Elsevier, vol. 167(2), pages 461-474, December.
    16. Silvia Bortot & Ricardo Alberto Marques Pereira & Thuy H. Nguyen, 2015. "Welfare functions and inequality indices in the binomial decomposition of OWA functions," DEM Discussion Papers 2015/08, Department of Economics and Management.
    17. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    18. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    19. Jürgen Eichberger & Simon Grant & David Kelsey, 2012. "When is ambiguity–attitude constant?," Journal of Risk and Uncertainty, Springer, vol. 45(3), pages 239-263, December.
    20. Ehud Lehrer, 2009. "A new integral for capacities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(1), pages 157-176, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:30:y:2021:i:6:d:10.1007_s10726-020-09666-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.