IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v19y2010i5d10.1007_s10726-008-9127-9.html
   My bibliography  Save this article

A Distance-Based Consensus Model with Flexible Choice of Rank-Position Weights

Author

Listed:
  • Ignacio Contreras

    (University Pablo de Olavide)

Abstract

In this paper we propose a preference aggregation procedure for those cases in which the decision-makers express their preferences by means of a ranking of alternatives. Among the most applied methods for this purpose are those inspired by the Borda–Kendall rule, which attach to each alternative an aggregated value of the votes received in the different rank positions, and those based on distance measures between individual and collective preferences, which look for the solution that maximizes the consensus. The main idea here is to integrate these two approaches. Taking into account that the information about the values of weights or utilities assigned to each rank position is imprecise, we propose an evaluation of the alternatives using that vector of weights that minimizes the disagreement between DMs. In order to solve the problem, mixed-integer linear programming models are constructed. Two numerical examples are examined to illustrate the applicability of the proposed procedure.

Suggested Citation

  • Ignacio Contreras, 2010. "A Distance-Based Consensus Model with Flexible Choice of Rank-Position Weights," Group Decision and Negotiation, Springer, vol. 19(5), pages 441-456, September.
  • Handle: RePEc:spr:grdene:v:19:y:2010:i:5:d:10.1007_s10726-008-9127-9
    DOI: 10.1007/s10726-008-9127-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-008-9127-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-008-9127-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duncan Black, 1976. "Partial justification of the Borda count," Public Choice, Springer, vol. 28(1), pages 1-15, December.
    2. Wade D. Cook & Lawrence M. Seiford, 1982. "On the Borda-Kendall Consensus Method for Priority Ranking Problems," Management Science, INFORMS, vol. 28(6), pages 621-637, June.
    3. Wade D. Cook & Lawrence M. Seiford, 1978. "Priority Ranking and Consensus Formation," Management Science, INFORMS, vol. 24(16), pages 1721-1732, December.
    4. Pavel Yu. Chebotarev & Elena Shamis, 1998. "Characterizations of scoring methodsfor preference aggregation," Annals of Operations Research, Springer, vol. 80(0), pages 299-332, January.
    5. Foroughi, A.A. & Tamiz, M., 2005. "An effective total ranking model for a ranked voting system," Omega, Elsevier, vol. 33(6), pages 491-496, December.
    6. Wade D. Cook & Moshe Kress, 1990. "A Data Envelopment Model for Aggregating Preference Rankings," Management Science, INFORMS, vol. 36(11), pages 1302-1310, November.
    7. Cook, Wade D. & Kress, Moshe & Seiford, Lawrence M., 1997. "A general framework for distance-based consensus in ordinal ranking models," European Journal of Operational Research, Elsevier, vol. 96(2), pages 392-397, January.
    8. Hannu Nurmi, 2004. "A Comparison of Some Distance-Based Choice Rules in Ranking Environments," Theory and Decision, Springer, vol. 57(1), pages 5-24, August.
    9. González-Pachøn, Jacinto & Romero, Carlos, 1999. "Distance-based consensus methods: a goal programming approach," Omega, Elsevier, vol. 27(3), pages 341-347, June.
    10. Daniel Eckert & Christian Klamler & Johann Mitlöhner & Christian Schlötterer, 2006. "A distance-based comparison of basic voting rules," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(4), pages 377-386, December.
    11. Obata, Tsuneshi & Ishii, Hiroaki, 2003. "A method for discriminating efficient candidates with ranked voting data," European Journal of Operational Research, Elsevier, vol. 151(1), pages 233-237, November.
    12. Donald G. Saari & Vincent R. Merlin, 2000. "A geometric examination of Kemeny's rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(3), pages 403-438.
    13. Hashimoto, Akihiro, 1997. "A ranked voting system using a DEA/AR exclusion model: A note," European Journal of Operational Research, Elsevier, vol. 97(3), pages 600-604, March.
    14. Cook, Wade D. & Kress, Moshe, 1986. "Ordinal ranking and preference strength," Mathematical Social Sciences, Elsevier, vol. 11(3), pages 295-306, June.
    15. Wade D. Cook & Moshe Kress, 1985. "Ordinal Ranking with Intensity of Preference," Management Science, INFORMS, vol. 31(1), pages 26-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhibin Wu & Jie Xiao & Ivan Palomares, 2019. "Direct Iterative Procedures for Consensus Building with Additive Preference Relations Based on the Discrete Assessment Scale," Group Decision and Negotiation, Springer, vol. 28(6), pages 1167-1191, December.
    2. Jiuping Xu & Zhibin Wu & Yuan Zhang, 2014. "A Consensus Based Method for Multi-criteria Group Decision Making Under Uncertain Linguistic Setting," Group Decision and Negotiation, Springer, vol. 23(1), pages 127-148, January.
    3. Lozano-Oyola, Macarena & Contreras, Ignacio & Blancas, Francisco Javier, 2019. "An Operational Non-compensatory Composite Indicator: Measuring Sustainable Tourism in Andalusian Urban Destinations," Ecological Economics, Elsevier, vol. 159(C), pages 1-10.
    4. Amin Mahmoudi & Saad Ahmed Javed, 2023. "Uncertainty Analysis in Group Decisions through Interval Ordinal Priority Approach," Group Decision and Negotiation, Springer, vol. 32(4), pages 807-833, August.
    5. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    6. Xiang Deng & Xiang Cheng & Jing Gu & Zeshui Xu, 2021. "An Innovative Indicator System and Group Decision Framework for Assessing Sustainable Development Enterprises," Group Decision and Negotiation, Springer, vol. 30(6), pages 1201-1238, December.
    7. I. Contreras, 2012. "Ordered Weighted Disagreement Functions," Group Decision and Negotiation, Springer, vol. 21(3), pages 345-361, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Contreras, 2012. "Ordered Weighted Disagreement Functions," Group Decision and Negotiation, Springer, vol. 21(3), pages 345-361, May.
    2. Paolo Viappiani, 2024. "Volumetric Aggregation Methods for Scoring Rules with Unknown Weights," Post-Print hal-04440153, HAL.
    3. Madjid Tavana & Mehdi Soltanifar & Francisco J. Santos-Arteaga, 2023. "Analytical hierarchy process: revolution and evolution," Annals of Operations Research, Springer, vol. 326(2), pages 879-907, July.
    4. Llamazares, Bonifacio & Peña, Teresa, 2013. "Aggregating preferences rankings with variable weights," European Journal of Operational Research, Elsevier, vol. 230(2), pages 348-355.
    5. Ebrahimnejad, Ali & Tavana, Madjid & Santos-Arteaga, Francisco J., 2016. "An integrated data envelopment analysis and simulation method for group consensus ranking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 1-17.
    6. Soltanifar, Mehdi & Shahghobadi, Saeid, 2013. "Selecting a benevolent secondary goal model in data envelopment analysis cross-efficiency evaluation by a voting model," Socio-Economic Planning Sciences, Elsevier, vol. 47(1), pages 65-74.
    7. Bonifacio Llamazares, 2016. "Ranking Candidates Through Convex Sequences of Variable Weights," Group Decision and Negotiation, Springer, vol. 25(3), pages 567-584, May.
    8. Mohammad Izadikhah & Reza Farzipoor Saen, 2019. "Solving voting system by data envelopment analysis for assessing sustainability of suppliers," Group Decision and Negotiation, Springer, vol. 28(3), pages 641-669, June.
    9. Y M Wang & K S Chin & J B Yang, 2007. "Three new models for preference voting and aggregation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1389-1393, October.
    10. Llamazares, Bonifacio & Pea, Teresa, 2009. "Preference aggregation and DEA: An analysis of the methods proposed to discriminate efficient candidates," European Journal of Operational Research, Elsevier, vol. 197(2), pages 714-721, September.
    11. J González-Pachón & C Romero, 2006. "An analytical framework for aggregating multiattribute utility functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1241-1247, October.
    12. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2019. "Reaching social consensus family budgets: The Spanish case," Omega, Elsevier, vol. 86(C), pages 28-41.
    13. Kelin Luo & Yinfeng Xu & Bowen Zhang & Huili Zhang, 2018. "Creating an acceptable consensus ranking for group decision making," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 307-328, July.
    14. Cook, Wade D. & Kress, Moshe & Seiford, Lawrence M., 1997. "A general framework for distance-based consensus in ordinal ranking models," European Journal of Operational Research, Elsevier, vol. 96(2), pages 392-397, January.
    15. Cook, Wade D., 2006. "Distance-based and ad hoc consensus models in ordinal preference ranking," European Journal of Operational Research, Elsevier, vol. 172(2), pages 369-385, July.
    16. Yeşilçimen, Ali & Yıldırım, E. Alper, 2019. "An alternative polynomial-sized formulation and an optimization based heuristic for the reviewer assignment problem," European Journal of Operational Research, Elsevier, vol. 276(2), pages 436-450.
    17. García-Lapresta, José Luis & Martínez-Panero, Miguel, 2024. "Two characterizations of the dense rank," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    18. Paolo Viappiani, 2020. "Robust winner determination in positional scoring rules with uncertain weights," Theory and Decision, Springer, vol. 88(3), pages 323-367, April.
    19. Jorge Alcalde-Unzu & Marc Vorsatz, 2013. "Measuring the cohesiveness of preferences: an axiomatic analysis," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(4), pages 965-988, October.
    20. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:19:y:2010:i:5:d:10.1007_s10726-008-9127-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.