IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v23y2024i2d10.1007_s10700-024-09419-9.html
   My bibliography  Save this article

Nonparametric uncertain time series models: theory and application in brent crude oil spot price analysis

Author

Listed:
  • Yi Zhang

    (Renmin University of China)

  • Jinwu Gao

    (Ocean University of China)

Abstract

Uncertain time series models constitute a pivotal tool for analyzing phenomena evolving over time. However, most of the prevailing research centers on parameter models, which exhibit limitations in addressing intricate temporal dynamics. To address this gap, this paper introduces a non-parametric uncertain time series model. Primarily, we propose the definition of the non-parametric uncertain time series models. Subsequently, tailored to the non-parametric uncertain additive autoregressive model, we propose a non-parametric estimation method based on linear polynomial splines. Following this, the effectiveness of these estimations is verified through residual analysis and uncertain hypothesis tests. Finally, we apply the introduced non-parametric estimation approach to the Brent crude oil spot price.

Suggested Citation

  • Yi Zhang & Jinwu Gao, 2024. "Nonparametric uncertain time series models: theory and application in brent crude oil spot price analysis," Fuzzy Optimization and Decision Making, Springer, vol. 23(2), pages 239-252, June.
  • Handle: RePEc:spr:fuzodm:v:23:y:2024:i:2:d:10.1007_s10700-024-09419-9
    DOI: 10.1007/s10700-024-09419-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-024-09419-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-024-09419-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:23:y:2024:i:2:d:10.1007_s10700-024-09419-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.