IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v20y2021i2d10.1007_s10700-020-09339-4.html
   My bibliography  Save this article

Analysis and prediction of confirmed COVID-19 cases in China with uncertain time series

Author

Listed:
  • Tingqing Ye

    (Tsinghua University)

  • Xiangfeng Yang

    (University of International Business and Economics)

Abstract

This paper presents an uncertain time series model to analyse and predict the evolution of confirmed COVID-19 cases in China, excluding imported cases. Compared with the results of the classical time series model, the uncertain time series model could better describe the COVID-19 epidemic by using an uncertain hypothesis test to filter out outliers. This improvement is reflected in the two observations. One is that the estimated variance of the disturbance term in the uncertain time series model is more appropriate and acceptable than that in the classical time series model, and the other is that the disturbance term of the classical time series model cannot be regarded as a random variable but as an uncertain variable.

Suggested Citation

  • Tingqing Ye & Xiangfeng Yang, 2021. "Analysis and prediction of confirmed COVID-19 cases in China with uncertain time series," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 209-228, June.
  • Handle: RePEc:spr:fuzodm:v:20:y:2021:i:2:d:10.1007_s10700-020-09339-4
    DOI: 10.1007/s10700-020-09339-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-020-09339-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-020-09339-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiangfeng Yang & Baoding Liu, 2019. "Uncertain time series analysis with imprecise observations," Fuzzy Optimization and Decision Making, Springer, vol. 18(3), pages 263-278, September.
    2. Zhe Liu & Ying Yang, 2020. "Least absolute deviations estimation for uncertain regression with imprecise observations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 33-52, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xiaoxia & Ma, Di & Choe, Kwang-Il, 2023. "Uncertain mean–variance portfolio model with inflation taking linear uncertainty distributions," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 203-217.
    2. Lin Chen & Yuanling Wang & Jin Peng & Qinzi Xiao, 2024. "Supply chain management based on uncertainty theory: a bibliometric analysis and future prospects," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 599-636, December.
    3. Jinran Chen, 2024. "Prediction of global trade network evolution with uncertain multi-step time series forecasting method," Fuzzy Optimization and Decision Making, Springer, vol. 23(3), pages 387-414, September.
    4. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongfeng Qin & Qiqi Li, 2023. "An uncertain support vector machine with imprecise observations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 611-629, December.
    2. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    3. Zhe Liu, 2021. "Uncertain growth model for the cumulative number of COVID-19 infections in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 229-242, June.
    4. Jue Lu & Lianlian Zhou & Wenxing Zeng & Anshui Li, 2024. "Music statistics: uncertain logistic regression models with applications in analyzing music," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 637-654, December.
    5. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    6. Waichon Lio & Rui Kang, 2023. "Bayesian rule in the framework of uncertainty theory," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 337-358, September.
    7. Liu, Z. & Yang, Y., 2021. "Pharmacokinetic model based on multifactor uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    8. Jinran Chen, 2024. "Prediction of global trade network evolution with uncertain multi-step time series forecasting method," Fuzzy Optimization and Decision Making, Springer, vol. 23(3), pages 387-414, September.
    9. Xiaoxia Huang & Xue Meng & Xiaozhu Xu, 2024. "Portfolio selection with second order uncertain dominance constraint," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 561-575, December.
    10. Liu, Zhe & Yang, Ying, 2022. "Moment estimation for parameters in high-order uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    11. Gholamreza Hesamian & Arne Johannssen & Nataliya Chukhrova, 2023. "A Three-Stage Nonparametric Kernel-Based Time Series Model Based on Fuzzy Data," Mathematics, MDPI, vol. 11(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:20:y:2021:i:2:d:10.1007_s10700-020-09339-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.