IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v19y2020i3d10.1007_s10700-020-09320-1.html
   My bibliography  Save this article

A new parallel fuzzy data envelopment analysis model for parallel systems with two components based on Stackelberg game theory

Author

Listed:
  • Xiao Shi

    (Shandong University of Finance and Economics)

  • Ali Emrouznejad

    (Aston University)

  • Minyue Jin

    (University of Science and Technology of China)

  • Feng Yang

    (University of Science and Technology of China)

Abstract

This paper investigates the problem of efficiency measurement for parallel systems with two components based on Stackelberg game theory, while some inputs/outputs are fuzzy numbers. Conventional DEA models treat DMUs as “Black Boxes”. While in this paper, we propose a new parallel fuzzy DEA model to calculate the efficiency scores for each DMU’s whole system and its sub-systems. Through the Stackelberg (leader–follower) game theory, the whole system’s efficiency score of each DMU is decomposed into a set of efficiency scores for its sub-systems. This approach is independent of the $$ \alpha $$ α -cut which reduces the computational efforts. In order to show our method, we use the data from Beasley (J Oper Res Soc 46(4):441–452, 1995) to measure the fuzzy efficiency of the teaching and research efficiencies of chemistry departments in UK universities.

Suggested Citation

  • Xiao Shi & Ali Emrouznejad & Minyue Jin & Feng Yang, 2020. "A new parallel fuzzy data envelopment analysis model for parallel systems with two components based on Stackelberg game theory," Fuzzy Optimization and Decision Making, Springer, vol. 19(3), pages 311-332, September.
  • Handle: RePEc:spr:fuzodm:v:19:y:2020:i:3:d:10.1007_s10700-020-09320-1
    DOI: 10.1007/s10700-020-09320-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-020-09320-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-020-09320-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2004. "DEA-like models for the efficiency evaluation of hierarchically structured units," European Journal of Operational Research, Elsevier, vol. 154(2), pages 465-476, April.
    4. Zha, Yong & Liang, Liang, 2010. "Two-stage cooperation model with input freely distributed among the stages," European Journal of Operational Research, Elsevier, vol. 205(2), pages 332-338, September.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Kao, Chiang & Lin, Pei-Huang, 2011. "Qualitative factors in data envelopment analysis: A fuzzy number approach," European Journal of Operational Research, Elsevier, vol. 211(3), pages 586-593, June.
    7. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    8. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    9. EMROUZNEJAD, Ali & TAVANA, Madjid & HATAMI-MARBINI, Adel, 2014. "The state of the art in fuzzy data envelopment analysis," LIDAM Reprints CORE 2543, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. C Kao, 2012. "Efficiency decomposition for parallel production systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 64-71, January.
    11. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    12. Mahmoudabadi, Mohammad Zarei & Azar, Adel & Emrouznejad, Ali, 2018. "A novel multilevel network slacks-based measure with an application in electric utility companies," Energy, Elsevier, vol. 158(C), pages 1120-1129.
    13. Cook, Wade D. & Hababou, Moez, 2001. "Sales performance measurement in bank branches," Omega, Elsevier, vol. 29(4), pages 299-307, August.
    14. Wade Cook & Moez Hababou & Hans Tuenter, 2000. "Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches," Journal of Productivity Analysis, Springer, vol. 14(3), pages 209-224, November.
    15. Barros, C.P. & Emrouznejad, Ali, 2016. "Assessing productive efficiency of banks using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banksAuthor-Name: Wanke, Peter," European Journal of Operational Research, Elsevier, vol. 249(1), pages 378-389.
    16. Liang Liang & Wade D. Cook & Joe Zhu, 2008. "DEA models for two‐stage processes: Game approach and efficiency decomposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 643-653, October.
    17. Kao, Chiang, 2014. "Efficiency decomposition for general multi-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 232(1), pages 117-124.
    18. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pejman Peykani & Ali Emrouznejad & Emran Mohammadi & Jafar Gheidar-Kheljani, 2024. "A novel robust network data envelopment analysis approach for performance assessment of mutual funds under uncertainty," Annals of Operations Research, Springer, vol. 339(3), pages 1149-1175, August.
    2. Ganji, S.S. & Dehghani, Alireza & Ajirlu, Shahrouz Fathi, 2024. "Evaluation of intercity road passenger transportation using a novel double-frontier game-regret-cross-efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    3. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    4. Kao, Chiang, 2019. "Inefficiency identification for closed series production systems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 599-607.
    5. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    6. Tavakoli, Ibrahim M. & Mostafaee, Amin, 2019. "Free disposal hull efficiency scores of units with network structures," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1027-1036.
    7. Kao, Chiang, 2014. "Efficiency decomposition in network data envelopment analysis with slacks-based measures," Omega, Elsevier, vol. 45(C), pages 1-6.
    8. Kao, Chiang, 2015. "Efficiency measurement for hierarchical network systems," Omega, Elsevier, vol. 51(C), pages 121-127.
    9. Kao, Chiang, 2018. "Multiplicative aggregation of division efficiencies in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 270(1), pages 328-336.
    10. Adel Hatami-Marbini & Saber Saati & Seyed Mojtaba Sajadi, 2018. "Efficiency analysis in two-stage structures using fuzzy data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 909-932, December.
    11. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    12. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2020. "Reprint of "Performance evaluation of China's high-tech innovation process :Analysis based on the innovation value chain"," Technovation, Elsevier, vol. 94.
    13. Kao, Chiang, 2017. "Measurement and decomposition of the Malmquist productivity index for parallel production systems," Omega, Elsevier, vol. 67(C), pages 54-59.
    14. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2018. "Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain," Technovation, Elsevier, vol. 74, pages 42-53.
    15. Feng Yang & Lijing Jiang & Sheng Ang, 2019. "A winner-take-all evaluation in data envelopment analysis," Annals of Operations Research, Springer, vol. 278(1), pages 141-158, July.
    16. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    17. Xiyang Lei & Yongjun Li & Qiwei Xie & Liang Liang, 2015. "Measuring Olympics achievements based on a parallel DEA approach," Annals of Operations Research, Springer, vol. 226(1), pages 379-396, March.
    18. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    19. Touati-Tliba, Mohamed, 2024. "Comparative performance of Algeria's education districts: The Influence of colonial legacy through cultural capital," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    20. An, Qingxian & Wen, Yao & Ding, Tao & Li, Yongli, 2019. "Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method," Omega, Elsevier, vol. 85(C), pages 16-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:19:y:2020:i:3:d:10.1007_s10700-020-09320-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.