IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v17y2018i2d10.1007_s10700-017-9271-2.html
   My bibliography  Save this article

Conditional uncertain set and conditional membership function

Author

Listed:
  • Kai Yao

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

The uncertain set, as a generation of uncertain variable, is a set-valued function on an uncertainty space. The conditional uncertain set, derived from an uncertain set restricted to a conditional uncertainty space given an uncertain event, plays a crucial role in uncertain inference systems. This paper studies conditional uncertain sets and their membership functions, and gives a sufficient condition for an uncertain set having a conditional membership function. In addition, when the uncertain set is conditioned on an independent event, this paper finds the analytic expression of the conditional membership function based on the original membership function.

Suggested Citation

  • Kai Yao, 2018. "Conditional uncertain set and conditional membership function," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 233-246, June.
  • Handle: RePEc:spr:fuzodm:v:17:y:2018:i:2:d:10.1007_s10700-017-9271-2
    DOI: 10.1007/s10700-017-9271-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-017-9271-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-017-9271-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:17:y:2018:i:2:d:10.1007_s10700-017-9271-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.