IDEAS home Printed from https://ideas.repec.org/a/spr/fuzinf/v3y2011i4d10.1007_s12543-011-0089-2.html
   My bibliography  Save this article

Neuro-fuzzy approach for short-term electricity price forecasting developed MATLAB-based software

Author

Listed:
  • M. Esfahani

    (Islamic Azad University, Khomeinishahr Branch)

Abstract

Bid and offer competition is a main transaction approach in deregulated electricity markets. Locational marginal prices (LMP) resulting from bidding competition determine electricity prices at a node or in an area. The LMP exhibits important information for market participants to develop their bidding strategies. Moreover, LMP is also a vital indicator for a Security Coordinator to perform market redispatch for congestion management. This paper presents a method using modular feed forward neural networks (FFNN) and fuzzy inference system (FIS) for forecasting LMPs. FFNN is used to forecast the electricity prices in a short time horizon and FIS to forecast the prices of special days. FFNN system includes an autocorrelation method for selecting parameters and methods for data preprocessing and preparing historical data to train the artificial neural network (ANN). In this paper, the historical LMPs of Pennsylvania, New Jersey, and Maryland (PJM) market are used to test the proposed method. It is found that the proposed neuro-fuzzy method is capable of forecasting LMP values efficiently. In addition, MATLAB-based software is designed to test and use the proposed model in different markets and environments. This is an efficient tool to study and model power markets for price forecasting. It is included with a database management system, data classifier, input variable selection, FFNN and FIS configuration and report generator in custom formats.

Suggested Citation

  • M. Esfahani, 2011. "Neuro-fuzzy approach for short-term electricity price forecasting developed MATLAB-based software," Fuzzy Information and Engineering, Springer, vol. 3(4), pages 339-350, December.
  • Handle: RePEc:spr:fuzinf:v:3:y:2011:i:4:d:10.1007_s12543-011-0089-2
    DOI: 10.1007/s12543-011-0089-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12543-011-0089-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12543-011-0089-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzinf:v:3:y:2011:i:4:d:10.1007_s12543-011-0089-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.