IDEAS home Printed from https://ideas.repec.org/a/spr/fuzinf/v1y2009i2d10.1007_s12543-009-0015-z.html
   My bibliography  Save this article

Application of system NCF method to ice flood prediction of the Yellow River

Author

Listed:
  • Yu Guo

    (Ministry of Water Resources)

Abstract

Combined forecasts is a well-established procedure for improving forecasting accuracy which takes advantage of the availability of both multiple information and computing resources for data-intensive forecasting. Therefore, based on the combination of engineering fuzzy set theory and artificial neural network theory as well as genetic algorithms and combined forecast theory, the system Non-linear Combined Forecast (NCF) method is established for accuracy enhancement of prediction, especially of ice flood prediction. The NCF values from single forecast model for Inner Mongolia Reach of the Yellow River are given. The case shows that the method has clear physical meanings and precise consequences. Compared with any single model, the system NCF method is more rational, effective and accurate.

Suggested Citation

  • Yu Guo, 2009. "Application of system NCF method to ice flood prediction of the Yellow River," Fuzzy Information and Engineering, Springer, vol. 1(2), pages 191-204, June.
  • Handle: RePEc:spr:fuzinf:v:1:y:2009:i:2:d:10.1007_s12543-009-0015-z
    DOI: 10.1007/s12543-009-0015-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12543-009-0015-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12543-009-0015-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodney W. Strachan & Herman K. Van Dijk, 2013. "Evidence On Features Of A Dsge Business Cycle Model From Bayesian Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(1), pages 385-402, February.
    2. Chuanhua Wei & Chenping Du & Nana Zheng, 2020. "A Changing Weights Spatial Forecast Combination Approach with an Application to Housing Price Prediction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(4), pages 1-11, April.
    3. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    4. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    5. Martin Hoesli & Anjeza Kadilli & Kustrim Reka, 2017. "Commonality in Liquidity and Real Estate Securities," The Journal of Real Estate Finance and Economics, Springer, vol. 55(1), pages 65-105, July.
    6. Zuzanna Karolak, 2021. "Energy prices forecasting using nonlinear univariate models," Bank i Kredyt, Narodowy Bank Polski, vol. 52(6), pages 577-598.
    7. Bursian, Dirk & Faia, Ester, 2018. "Trust in the monetary authority," Journal of Monetary Economics, Elsevier, vol. 98(C), pages 66-79.
    8. Shintani, Mototsugu, 2005. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 517-538, June.
    9. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    10. Tihana Skrinjaric, 2023. "Leading indicators of financial stress in Croatia: a regime switching approach," Public Sector Economics, Institute of Public Finance, vol. 47(2), pages 205-232.
    11. Casarin, Roberto & Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio, 2013. "Risk management of risk under the Basel Accord: A Bayesian approach to forecasting Value-at-Risk of VIX futures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 183-204.
    12. Correa, Arnildo da Silva & Minella, André, 2010. "Nonlinear mechanisms of the exchange rate pass-through: A Phillips curve model with threshold for Brazil," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 64(3), September.
    13. Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
    14. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    15. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    16. Belke, Ansgar & Beckmann, Joscha & Verheyen, Florian, 2013. "Interest rate pass-through in the EMU – New evidence from nonlinear cointegration techniques for fully harmonized data," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 1-24.
    17. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    18. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    19. Costas Milas & Phil Rothman, 2005. "Multivariate STAR Unemployment Rate Forecasts," Econometrics 0502010, University Library of Munich, Germany.
    20. Ansgar Belke & Joscha Beckmann & Florian Verheyen, 2012. "Interest Rate Pass-Through in the EMU – New Evidence from Nonlinear Cointegration Techniques for Fully Harmonized Data," Ruhr Economic Papers 0350, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzinf:v:1:y:2009:i:2:d:10.1007_s12543-009-0015-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.