IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v29y2017i2d10.1007_s10696-016-9249-3.html
   My bibliography  Save this article

Enhancement of supply chain resilience through inter-echelon information sharing

Author

Listed:
  • Haobin Li

    (A*STAR Singapore)

  • Giulia Pedrielli

    (National University of Singapore)

  • Loo Hay Lee

    (National University of Singapore)

  • Ek Peng Chew

    (National University of Singapore)

Abstract

Supply chains in the globally interconnected society have complex structures and thus are susceptible to disruptions such as natural disasters and diseases. The impact of the risks and disruptions that occur to one business entity can propagate to the entire supply chain. However, it has been proposed that cooperation amongst business entities can mitigate the impact of the risks. This paper aims to investigate the value of information sharing in a generalized three-echelon supply chain. The supply chain model is built in a system dynamics software, and three decision-making rules based on different levels of information sharing are developed. Performances of the three ordering policies with shock applied are compared. The results of the experiments prove the value of information sharing in the supply chain when shock exists.

Suggested Citation

  • Haobin Li & Giulia Pedrielli & Loo Hay Lee & Ek Peng Chew, 2017. "Enhancement of supply chain resilience through inter-echelon information sharing," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 260-285, June.
  • Handle: RePEc:spr:flsman:v:29:y:2017:i:2:d:10.1007_s10696-016-9249-3
    DOI: 10.1007/s10696-016-9249-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-016-9249-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-016-9249-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haobin Li & Loo Hay Lee & Ek Peng Chew & Peter Lendermann, 2015. "MO-COMPASS: a fast convergent search algorithm for multi-objective discrete optimization via simulation," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1153-1169, November.
    2. Jun Wu & Jian Li & Jia Chen & Yingxue Zhao & Shouyang Wang, 2011. "Risk management in supply chains," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 5(2/3), pages 157-204.
    3. Banerjee, Avijit & Burton, Jonathan & Banerjee, Snehamay, 2003. "A simulation study of lateral shipments in single supplier, multiple buyers supply chain networks," International Journal of Production Economics, Elsevier, vol. 81(1), pages 103-114, January.
    4. Kevin B. Hendricks & Vinod R. Singhal, 2005. "Association Between Supply Chain Glitches and Operating Performance," Management Science, INFORMS, vol. 51(5), pages 695-711, May.
    5. Y Barlas & B Gunduz, 2011. "Demand forecasting and sharing strategies to reduce fluctuations and the bullwhip effect in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 458-473, March.
    6. Z. Justin Ren & Morris A. Cohen & Teck H. Ho & Christian Terwiesch, 2010. "Information Sharing in a Long-Term Supply Chain Relationship: The Role of Customer Review Strategy," Operations Research, INFORMS, vol. 58(1), pages 81-93, February.
    7. Wilson, Martha C., 2007. "The impact of transportation disruptions on supply chain performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 295-320, July.
    8. Lode Li, 2002. "Information Sharing in a Supply Chain with Horizontal Competition," Management Science, INFORMS, vol. 48(9), pages 1196-1212, September.
    9. Sawik, Tadeusz, 2011. "Selection of supply portfolio under disruption risks," Omega, Elsevier, vol. 39(2), pages 194-208, April.
    10. Tang, Ou & Nurmaya Musa, S., 2011. "Identifying risk issues and research advancements in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 133(1), pages 25-34, September.
    11. Tianjian Yang & Weiguo Fan, 2016. "Information management strategies and supply chain performance under demand disruptions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 8-27, January.
    12. Fiala, P., 2005. "Information sharing in supply chains," Omega, Elsevier, vol. 33(5), pages 419-423, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    2. Roberto Dominguez & Salvatore Cannella & Borja Ponte & Jose M. Framinan, 2022. "Information sharing in decentralised supply chains with partial collaboration," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 263-292, June.
    3. Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Tao & Loo Hay Lee & Ek Peng Chew, 2016. "Quantifying the Effect of Sharing Information in a Supply Chain Facing Supply Disruptions," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-28, August.
    2. Clemons, Rebecca & Slotnick, Susan A., 2016. "The effect of supply-chain disruption, quality and knowledge transfer on firm strategy," International Journal of Production Economics, Elsevier, vol. 178(C), pages 169-186.
    3. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    4. Schmidt, Christoph G. & Wuttke, David A. & Heese, H. Sebastian & Wagner, Stephan M., 2023. "Antecedents of public reactions to supply chain glitches," International Journal of Production Economics, Elsevier, vol. 259(C).
    5. Mishra, Deepa & Sharma, R.R.K. & Kumar, Sameer & Dubey, Rameshwar, 2016. "Bridging and buffering: Strategies for mitigating supply risk and improving supply chain performance," International Journal of Production Economics, Elsevier, vol. 180(C), pages 183-197.
    6. Li, Yongjian & Zhen, Xueping & Qi, Xiangtong & Cai, Gangshu (George), 2016. "Penalty and financial assistance in a supply chain with supply disruption," Omega, Elsevier, vol. 61(C), pages 167-181.
    7. Papanagnou, Christos & Seiler, Andreas & Spanaki, Konstantina & Papadopoulos, Thanos & Bourlakis, Michael, 2022. "Data-driven digital transformation for emergency situations: The case of the UK retail sector," International Journal of Production Economics, Elsevier, vol. 250(C).
    8. Wong, Christina W.Y. & Lirn, Taih-Cherng & Yang, Ching-Chiao & Shang, Kuo-Chung, 2020. "Supply chain and external conditions under which supply chain resilience pays: An organizational information processing theorization," International Journal of Production Economics, Elsevier, vol. 226(C).
    9. Yu, Yanan & He, Yong & Zhao, Xuan, 2021. "Impact of demand information sharing on organic farming adoption: An evolutionary game approach," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    10. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    11. Albert Y. Ha & Huajiang Luo & Weixin Shang, 2022. "Supplier Encroachment, Information Sharing, and Channel Structure in Online Retail Platforms," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1235-1251, March.
    12. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    13. Guertler, Benjamin & Spinler, Stefan, 2015. "When does operational risk cause supply chain enterprises to tip? A simulation of intra-organizational dynamics," Omega, Elsevier, vol. 57(PA), pages 54-69.
    14. Yingjie Fan & Frank Schwartz & Stefan Voß & David L. Woodruff, 2017. "Stochastic programming for flexible global supply chain planning," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 601-633, December.
    15. Leon Yang Chu & Noam Shamir & Hyoduk Shin, 2017. "Strategic Communication for Capacity Alignment with Pricing in a Supply Chain," Management Science, INFORMS, vol. 63(12), pages 4366-4377, December.
    16. Aqlan, Faisal & Lam, Sarah S., 2015. "A fuzzy-based integrated framework for supply chain risk assessment," International Journal of Production Economics, Elsevier, vol. 161(C), pages 54-63.
    17. Quan Zhu & Harold Krikke & Marjolein C. J. Caniëls, 2021. "The Effects of Different Supply Chain Integration Strategies on Disruption Recovery: A System Dynamics Study on the Cheese Industry," Logistics, MDPI, vol. 5(2), pages 1-18, April.
    18. Guertler, Benjamin & Spinler, Stefan, 2015. "Supply risk interrelationships and the derivation of key supply risk indicators," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 224-236.
    19. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    20. Mizgier, Kamil J. & Hora, Manpreet & Wagner, Stephan M. & Jüttner, Matthias P., 2015. "Managing operational disruptions through capital adequacy and process improvement," European Journal of Operational Research, Elsevier, vol. 245(1), pages 320-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:29:y:2017:i:2:d:10.1007_s10696-016-9249-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.