IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v28y2024i1d10.1007_s00780-023-00520-2.html
   My bibliography  Save this article

Pricing options on flow forwards by neural networks in a Hilbert space

Author

Listed:
  • Fred Espen Benth

    (University of Oslo)

  • Nils Detering

    (University of California at Santa Barbara)

  • Luca Galimberti

    (King’s College London)

Abstract

We propose a new methodology for pricing options on flow forwards by applying infinite-dimensional neural networks. We recast the pricing problem as an optimisation problem in a Hilbert space of real-valued functions on the positive real line, which is the state space for the term structure dynamics. This optimisation problem is solved by using a feedforward neural network architecture designed for approximating continuous functions on the state space. The proposed neural network is built upon the basis of the Hilbert space. We provide case studies that show its numerical efficiency, with superior performance over that of a classical neural network trained on sampling the term structure curves.

Suggested Citation

  • Fred Espen Benth & Nils Detering & Luca Galimberti, 2024. "Pricing options on flow forwards by neural networks in a Hilbert space," Finance and Stochastics, Springer, vol. 28(1), pages 81-121, January.
  • Handle: RePEc:spr:finsto:v:28:y:2024:i:1:d:10.1007_s00780-023-00520-2
    DOI: 10.1007/s00780-023-00520-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-023-00520-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-023-00520-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Heath–Jarrow–Morton framework; Stochastic partial differential equations; Hilbert space neural networks; Forward curves; Futures price; Efficient option pricing; Energy markets;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:28:y:2024:i:1:d:10.1007_s00780-023-00520-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.