Author
Listed:
- Bernat Corominas-Murtra
(University Graz)
- Rudolf Hanel
(Complexity Science Hub Vienna
CS, Medical University of Vienna)
- Petr Jizba
(Czech Technical University in Prague)
Abstract
When at equilibrium, large-scale systems obey conventional thermodynamics because they belong to microscopic configurations (or states) that are typical. Crucially, the typical states usually represent only a small fraction of the total number of possible states, and yet the characterization of the set of typical states—the typical set—alone is sufficient to describe the macroscopic behavior of a given system. Consequently, the concept of typicality, and the associated Asymptotic Equipartition Property allow for a drastic reduction of the degrees of freedom needed for system’s statistical description. The mathematical rationale for such a simplification in the description is due to the phenomenon of concentration of measure. The later emerges for equilibrium configurations thanks to very strict constraints on the underlying dynamics, such as weekly interacting and (almost) independent system constituents. The question naturally arises as to whether the concentration of measure and related typicality considerations can be extended and applied to more general complex systems, and if so, what mathematical structure can be expected in the ensuing generalized thermodynamics. In this paper, we illustrate the relevance of the concept of typicality in the toy model context of the “thermalized” coin and show how this leads naturally to Shannon entropy. We also show an intriguing connection: The characterization of typical sets in terms of Rényi and Tsallis entropies naturally leads to the free energy and partition function, respectively, and makes their relationship explicit. Finally, we propose potential ways to generalize the concept of typicality to systems where the standard microscopic assumptions do not hold. Graphical abstract
Suggested Citation
Bernat Corominas-Murtra & Rudolf Hanel & Petr Jizba, 2024.
"Typicality, entropy and the generalization of statistical mechanics,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(8), pages 1-13, August.
Handle:
RePEc:spr:eurphb:v:97:y:2024:i:8:d:10.1140_epjb_s10051-024-00764-7
DOI: 10.1140/epjb/s10051-024-00764-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:8:d:10.1140_epjb_s10051-024-00764-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.