IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i8d10.1140_epjb_s10051-024-00759-4.html
   My bibliography  Save this article

Solving Schrödinger equation within arbitrary spherical quantum dots with neural network

Author

Listed:
  • A. Naifar

    (University of Kairouan
    University of Kairouan)

  • K. Hasanirokh

    (University of Tabriz)

Abstract

In this study, we delve into the realm of solving the Schrödinger equation within spherical quantum dots (QDs) characterized by arbitrary potentials, leveraging the capabilities of machine learning methodologies. Our approach involves training neural networks (NNs) through a curated collection of potentials and wave functions (WFs), which were initially computed using the classical finite element method. To gauge the reliability of the estimates produced by these NNs, we introduce accuracy indicators for rigorous assessment. The training procedure relies on the gradient descent method to optimize the networks’ performance. Furthermore, our investigation encompasses scenarios with analytical potentials, broadening the scope of our analysis beyond empirical cases. By integrating analytical potentials into our study, we aim to achieve a comprehensive understanding of the neural network’s effectiveness in handling various potential profiles. This expansion opens avenues for more versatile and insightful quantum mechanical explorations within the realm of nanoscale systems. Among the findings, the QD core exhibited the highest level of accuracy in WF estimation, achieved through the utilization of a spherical potential. Conversely, the estimation performance was least reliable in scenarios involving HLP, with a notable deviation of 16.68%. Transitioning to the core/shell structure, employing the double HLP configuration resulted in the most precise estimation of WFs. This contrasts significantly with the estimation performance for the V-Shaped Potential, where accuracy was comparatively lower with deviation of 4%. Graphical Abstract In this work, we solved the Schrödinger equation within spherical quantum dots characterized by arbitrary potentials, leveraging the capabilities of machine learning methodologies. Our approach includes training neural networks through a curated collection of potentials and wave functions, which were initially computed using the classical finite element method. By integrating analytical potentials into our study, we aim to achieve a comprehensive understanding of the neural network’s effectiveness in handling various potential profiles. The estimation performance was least reliable in scenarios involving HLP, with a notable deviation of 16.68%. Transitioning to the core/shell structure, employing the double HLP configuration resulted in the most precise estimation of WFs. This contrasts significantly with the estimation performance for the V-Shaped Potential (VP), where accuracy was comparatively lower with deviation of 4%

Suggested Citation

  • A. Naifar & K. Hasanirokh, 2024. "Solving Schrödinger equation within arbitrary spherical quantum dots with neural network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(8), pages 1-9, August.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:8:d:10.1140_epjb_s10051-024-00759-4
    DOI: 10.1140/epjb/s10051-024-00759-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00759-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00759-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:8:d:10.1140_epjb_s10051-024-00759-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.