IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i6d10.1140_epjb_s10051-024-00702-7.html
   My bibliography  Save this article

Direct solution of multiple excitations in a matrix product state with block Lanczos

Author

Listed:
  • Thomas E. Baker

    (Université de Sherbrooke
    University of York
    University of Victoria)

  • Alexandre Foley

    (Université de Sherbrooke)

  • David Sénéchal

    (Université de Sherbrooke)

Abstract

Matrix product state methods are known to be efficient for computing ground states of local, gapped Hamiltonians, particularly in one dimension. We introduce the multi-targeted density matrix renormalization group method that acts on a bundled matrix product state, holding many excitations. The use of a block or banded Lanczos algorithm allows for the simultaneous, variational optimization of the bundle of excitations. The method is demonstrated on a Heisenberg model and other cases of interest. A large of number of excitations can be obtained at a small bond dimension with highly reliable local observables throughout the chain. Graphical abstract

Suggested Citation

  • Thomas E. Baker & Alexandre Foley & David Sénéchal, 2024. "Direct solution of multiple excitations in a matrix product state with block Lanczos," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-18, June.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:6:d:10.1140_epjb_s10051-024-00702-7
    DOI: 10.1140/epjb/s10051-024-00702-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00702-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00702-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Degli Esposti Boschi & F. Ortolani, 2004. "Investigation of quantum phase transitions using multi-target DMRG methods," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(4), pages 503-516, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:6:d:10.1140_epjb_s10051-024-00702-7. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.