IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i12d10.1140_epjb_s10051-024-00847-5.html
   My bibliography  Save this article

DFT exploration of structural, optoelectronic, thermoelectric and mechanical properties of Protactinium-Based Oxide Perovskites APaO3 (A = Li, Na, K) for optoelectronic applications

Author

Listed:
  • Muhammad Awais

    (University of Okara)

  • Fayyaz Hussain

    (Bahauddin Zakariya University)

  • Niaz Ahmad Niaz

    (Bahauddin Zakariya University)

  • Abdul Shakoor

    (Bahauddin Zakariya University)

  • Khalid Nadeem Riaz

    (University of Okara)

  • Umair Mumtaz

    (Bahauddin Zakariya University)

  • Farooq Ahmad

    (Polish Academy of Sciences)

  • Muhammad Shafiq

    (Abdul Wali Khan University Mardan)

  • Manawwer Alam

    (King Saud University)

  • Rizwan Wahab

    (King Saud University)

Abstract

In recent years, there has been a bolstering inclination towards the exploration of ternary perovskite oxide materials, owing to their extensive utilization in optoelectronic appliances. The potential for improving optoelectronic devices is examined in this study by examining the effects of the substitution of Li and Na cations at the A-site of KPaO3 oxide perovskite. This article provides a thorough investigation using the density functional theory (DFT) for the structural, optoelectronic, thermoelectric and mechanical behavior of APaO3 (A = Li, Na, and K). Different approximations, including Perdew–Bruke–Ernzerhof generalized gradient approximation (PBE-GGA), Trans-Balha Modified Becke-Johnson (TB-mBJ), and Local Spin Density Approximation (LSDA), were employed in finding out the bandgap of APaO3 (A = Li, Na, and K). LiPaO3 and NaPaO3 possess a direct bandgap, whereas KPaO3 possesses an indirect bandgap upon implementation of all potentials. It is reported that all materials have a wide bandgap (> 3 eV) and semi-conducting nature. To comprehend the optical and thermoelectric behavior of the investigated materials optical and thermoelectric properties are enumerated for the mentioned materials. Our current study offers a significant roadmap to determine structural, optoelectronic, thermoelectric and mechanical characteristics to help researchers better understand a range of physical phenomena and to urge device designers to use these materials in Optoelectronic and thermoelectric devices. Graphical abstract

Suggested Citation

  • Muhammad Awais & Fayyaz Hussain & Niaz Ahmad Niaz & Abdul Shakoor & Khalid Nadeem Riaz & Umair Mumtaz & Farooq Ahmad & Muhammad Shafiq & Manawwer Alam & Rizwan Wahab, 2024. "DFT exploration of structural, optoelectronic, thermoelectric and mechanical properties of Protactinium-Based Oxide Perovskites APaO3 (A = Li, Na, K) for optoelectronic applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(12), pages 1-14, December.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:12:d:10.1140_epjb_s10051-024-00847-5
    DOI: 10.1140/epjb/s10051-024-00847-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00847-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00847-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Ambrosetti & Paolo Umari & Pier Luigi Silvestrelli & Joshua Elliott & Alexandre Tkatchenko, 2022. "Optical van-der-Waals forces in molecules: from electronic Bethe-Salpeter calculations to the many-body dispersion model," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Gori & Philip Kurian & Alexandre Tkatchenko, 2023. "Second quantization of many-body dispersion interactions for chemical and biological systems," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:12:d:10.1140_epjb_s10051-024-00847-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.