IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i10d10.1140_epjb_s10051-024-00781-6.html
   My bibliography  Save this article

Statistical analysis of proteins families: a network and random matrix approach

Author

Listed:
  • Rakhi Kumari

    (University of Delhi)

  • Pradeep Bhadola

    (Mahidol University, Nakhonsawan Campus)

  • Nivedita Deo

    (University of Delhi)

Abstract

We present a novel method for analyzing the structural organization of protein families by integrating random matrix theory (RMT) and network theory with the physiochemical properties of amino acids and multiple sequence alignment. RMT distinguishes significant interactions between amino acids from background noise, pinpointing coevolving positions likely crucial for protein structure and function. This property-based approach captures both short and long-range correlations, unlike previous methods that treat amino acids as mere characters. The eigenvector components of eigenvalues outside the RMT bound deviate from typical RMT observations, offering critical system information. We quantify the information content of each eigenvector using an entropic estimate, showing that the smallest eigenvectors are highly localized and informative. These eigenvectors form clusters of biologically and structurally significant positions, validated by experiments. By creating networks of amino acid interactions for each property, we uncover key motifs and interactions. This method enhances our understanding of protein evolution, interactions, and potential targets to modulate enzymatic actions. We study two protein families Cadherin-4 and Betalactamase families which display two extreme characteristics one nearly random and the other very structured or organised. Graphical abstract

Suggested Citation

  • Rakhi Kumari & Pradeep Bhadola & Nivedita Deo, 2024. "Statistical analysis of proteins families: a network and random matrix approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-15, October.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:10:d:10.1140_epjb_s10051-024-00781-6
    DOI: 10.1140/epjb/s10051-024-00781-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00781-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00781-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simona Cocco & Remi Monasson & Martin Weigt, 2013. "From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shou-Wen Wang & Anne-Florence Bitbol & Ned S Wingreen, 2019. "Revealing evolutionary constraints on proteins through sequence analysis," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-16, April.
    2. Swetha Garimalla & Thomas Kieber-Emmons & Anastas D Pashov, 2015. "The Patterns of Coevolution in Clade B HIV Envelope's N-Glycosylation Sites," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
    3. Cocco, S. & Monasson, R. & Posani, L. & Rosay, S. & Tubiana, J., 2018. "Statistical physics and representations in real and artificial neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 45-76.
    4. Christoph Feinauer & Marcin J Skwark & Andrea Pagnani & Erik Aurell, 2014. "Improving Contact Prediction along Three Dimensions," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-13, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:10:d:10.1140_epjb_s10051-024-00781-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.