IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i3d10.1140_epjb_s10051-022-00306-z.html
   My bibliography  Save this article

Crossing time in the dissipative Landau–Zener quantum dynamics

Author

Listed:
  • P. Nalbach

    (Westfälische Hochschule)

Abstract

We study the dynamics of a quantum two-state system driven through an avoided crossing under the influence of a super-Ohmic environment. We determine the Landau–Zener probability employing the numerical exact quasi-adiabatic path integral and a Markovian weak coupling approach. Increasing the driving time in the numerical protocol, we find converged results which shows that super-Ohmic environments only influence the Landau Zener probability within a finite crossing time window. This crossing time is qualitatively determined by the environmental cut-off energy. At weak coupling, we show that the Markovian weak coupling approach provides an accurate description. Since pure dephasing of a super-Ohmic bath is non-Markovian, this highlights that pure dephasing hardly influences the Landau–Zener probability. The finite crossing time window, thus, results from the suppression of relaxation once the energy splitting exceeds the environmental cut-off energy. Graphical abstract

Suggested Citation

  • P. Nalbach, 2022. "Crossing time in the dissipative Landau–Zener quantum dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-8, March.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:3:d:10.1140_epjb_s10051-022-00306-z
    DOI: 10.1140/epjb/s10051-022-00306-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00306-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00306-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:3:d:10.1140_epjb_s10051-022-00306-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.