Author
Listed:
- Javier Flores Méndez
(Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina
Tecnológico Nacional de Mexico/I.T. Puebla-División de Estudios de Posgrado e Investigación)
- Benito Zenteno Mateo
(Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina)
- Mario Moreno Moreno
(Instituto Nacional de Astrofísica, óptica y Electrónica)
- Alfredo Morales-Sánchez
(Instituto Nacional de Astrofísica, óptica y Electrónica)
- Gustavo M. Minquiz
(Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina
Tecnológico Nacional de Mexico/I.T. Puebla-División de Estudios de Posgrado e Investigación)
- Hector Vázquez Leal
(Facultad de Instrumentación Electrónica, Universidad Veracruzana
Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico (COVEICYDET))
- Israel Vivaldo-De la Cruz
(Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina)
- Silvia Cortés-López
(Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina)
- Ana Cecilia Piñón Reyes
(Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina)
- Roberto Ambrosio
(Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina)
Abstract
We have theoretically investigated the electromagnetic properties for one-dimensional (1D) photonic crystals with magnetic and artificial chiral inclusions in the quasi-static limit, that is when the size of the unit cell of the crystal is small with respect to the wavelength of the operating wave. We suggest a homogenization theory to determine the effective tensors of the optical response, to achieve this objective, we apply the Bloch’s plane waves method to describe the electromagnetic modes that can propagate in the periodic structure under consideration. Subsequently, the Maxwell’s “microscopic” equations are homogenized replacing the Bloch waves by plane waves that attenuate the fast oscillations of the electromagnetic fields within the unit cell (macroscopic level), i.e., the average-macroscopic electromagnetic fields are determined by the component corresponding to the null reciprocal lattice vector in the expansion in plane waves. The numerical implementation of our theory of homogenization allow us to study the effective bianisotropic electromagnetic response (effective dielectric permittivity, magnetic permeability and electric-magnetic coupling tensors, this last is described by an effective chiral parameter) for 1D photonic crystals whose constituents in its unit cell are a dielectric layer and another magnetic (both isotropic and anisotropic) or chiral inclusion layer. The results are illustrated and discussed by the effective parameters as a function of the filling fraction of the inclusion and show for each case of homogeneous effective medium different components of anisotropy in the electromagnetic response of permittivity, permeability and chirality with the increase of the filling fraction. Besides, the behaviors of the obtained graphs agree well with Rytov’s formulas of effective medium. The relevant results of this theory will be very useful for the study and better understanding of the nature and design of metamaterials with predetermined anisotropic optical properties. Graphical abstract
Suggested Citation
Javier Flores Méndez & Benito Zenteno Mateo & Mario Moreno Moreno & Alfredo Morales-Sánchez & Gustavo M. Minquiz & Hector Vázquez Leal & Israel Vivaldo-De la Cruz & Silvia Cortés-López & Ana Cecilia P, 2020.
"Homogenization method for one-dimensional photonic crystals with magnetic and chiral inclusions,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(7), pages 1-12, July.
Handle:
RePEc:spr:eurphb:v:93:y:2020:i:7:d:10.1140_epjb_e2020-10095-4
DOI: 10.1140/epjb/e2020-10095-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:93:y:2020:i:7:d:10.1140_epjb_e2020-10095-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.