IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v93y2020i6d10.1140_epjb_e2020-100580-7.html
   My bibliography  Save this article

Comprehending deterministic and stochastic occasional uncoupling induced synchronizations through each other

Author

Listed:
  • Anupam Ghosh

    (Indian Institute of Technology Kanpur)

  • Sagar Chakraborty

    (Indian Institute of Technology Kanpur)

Abstract

In this paper, we numerically study the stochastic and the deterministic occasional uncoupling methods of effecting identical synchronized states in low dimensional, dissipative, diffusively coupled, chaotic flows that are otherwise not synchronized when continuously coupled at the same coupling strength parameter. In the process of our attempt to understand the mechanisms behind the success of the occasional uncoupling schemes, we devise a hybrid between the transient uncoupling and the stochastic on-off coupling, and aptly name it the transient stochastic uncoupling – yet another stochastic occasional uncoupling method. Our subsequent investigation on the transient stochastic uncoupling allows us to surpass the effectiveness of the stochastic on-off coupling with very fast on-off switching rate. Additionally, through the transient stochastic uncoupling, we establish that the indicators quantifying the local contracting dynamics in the corresponding transverse manifold are generally not useful in finding the optimal coupling region of the phase space in the case of the deterministic transient uncoupling. In fact, we highlight that the autocorrelation function – a non-local indicator of the dynamics – of the corresponding response system’s chaotic time-series dictates when the deterministic uncoupling could be successful. We illustrate all our heuristic results using a few well-known examples of diffusively coupled chaotic oscillators. Graphical abstract

Suggested Citation

  • Anupam Ghosh & Sagar Chakraborty, 2020. "Comprehending deterministic and stochastic occasional uncoupling induced synchronizations through each other," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(6), pages 1-14, June.
  • Handle: RePEc:spr:eurphb:v:93:y:2020:i:6:d:10.1140_epjb_e2020-100580-7
    DOI: 10.1140/epjb/e2020-100580-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2020-100580-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2020-100580-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Anupam, 2023. "Measure synchronization in interacting Hamiltonian systems: A brief review," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Ghosh, Anupam & Sujith, R.I., 2020. "Emergence of order from chaos: A phenomenological model of coupled oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:93:y:2020:i:6:d:10.1140_epjb_e2020-100580-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.