IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v92y2019i9d10.1140_epjb_e2019-90570-7.html
   My bibliography  Save this article

Impact of awareness in metapopulation epidemic model to suppress the infected individuals for different graphs

Author

Listed:
  • K. M. Ariful Kabir

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
    Bangladesh University of Engineering and Technology)

  • Jun Tanimotoc

    (Faculty of Engineering Sciences, Kyushu University)

Abstract

The metapopulation dynamical model with information spreading in SIS epidemic diffusion model is presented for random walkers for sub-populations to display the effect of awareness. Two-layer SIS-UA (susceptible-infected-susceptible-unaware-aware) epidemic model is considered to reveal the effect of information spreading in a graph, where, each node denoted a sub-population. The individuals migrate by random walk from one node to another node on the graph by themselves or forcefully to escape from contagious disease. Moreover, the individuals in a node are classified into four states as unaware susceptible (US), aware susceptible (AS), unaware infected (UI) and aware infected (AI). Meanwhile, to study the impact of graph topology on individuals in each node (subpopulation), four different graphs: star, cycle, wheel and complete are considered as representing both homogeneous and heterogeneous connections with the various number of nodes. The influence of migration for information spreading is displayed to subdue infected individuals with time steps. Finally, several impressive cases in terms of what attributes of individuals in each subpopulation being allowed (or say, pushed) migration are considered, which is summarized in the form of a full phase diagram. Graphical abstract

Suggested Citation

  • K. M. Ariful Kabir & Jun Tanimotoc, 2019. "Impact of awareness in metapopulation epidemic model to suppress the infected individuals for different graphs," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(9), pages 1-16, September.
  • Handle: RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-90570-7
    DOI: 10.1140/epjb/e2019-90570-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2019-90570-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2019-90570-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Liu, Chuang & Zhou, Nan & Zhan, Xiu-Xiu & Sun, Gui-Quan & Zhang, Zi-Ke, 2020. "Markov-based solution for information diffusion on adaptive social networks," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    3. Jia, Mengqi & Li, Xin & Ding, Li, 2021. "Epidemic spreading with awareness on multi-layer activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    4. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-90570-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.