IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v92y2019i9d10.1140_epjb_e2019-100345-7.html
   My bibliography  Save this article

Policies for allocation of information in task-oriented groups: elitism and egalitarianism outperform welfarism

Author

Listed:
  • Sandro M. Reia

    (Instituto de Física de São Carlos, Universidade de São Paulo)

  • Paulo F. Gomes

    (Instituto de Física de São Carlos, Universidade de São Paulo
    Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Goiás)

  • José F. Fontanari

    (Instituto de Física de São Carlos, Universidade de São Paulo)

Abstract

Communication or influence networks are probably the most controllable of all factors that are known to impact on the problem-solving capability of task-forces. In the case connections are costly, it is necessary to implement a policy to allocate them to the individuals. Here we use an agent-based model to study how distinct allocation policies affect the performance of a group of agents whose task is to find the global maxima of NK fitness landscapes. Agents cooperate by broadcasting messages informing on their fitness and use this information to imitate the fittest agent in their influence neighborhoods. The larger the influence neighborhood of an agent, the more links, and hence information, the agent receives. We find that the elitist policy in which agents with above-average fitness have their influence neighborhoods amplified, whereas agents with below-average fitness have theirs deflated, is optimal for smooth landscapes, provided the group size is not too small. For rugged landscapes, however, the elitist policy can perform very poorly for certain group sizes. In addition, we find that the egalitarian policy, in which the size of the influence neighborhood is the same for all agents, is optimal for both smooth and rugged landscapes in the case of small groups. The welfarist policy, in which the actions of the elitist policy are reversed, is always suboptimal, i.e., depending on the group size it is outperformed by either the elitist or the egalitarian policies. Graphical abstract

Suggested Citation

  • Sandro M. Reia & Paulo F. Gomes & José F. Fontanari, 2019. "Policies for allocation of information in task-oriented groups: elitism and egalitarianism outperform welfarism," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(9), pages 1-10, September.
  • Handle: RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-100345-7
    DOI: 10.1140/epjb/e2019-100345-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2019-100345-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2019-100345-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert L. Goldstone & Michael E. Roberts & Winter Mason & Todd Gureckis, 2008. "Collective Search in Concrete and Abstract Spaces," Springer Optimization and Its Applications, in: Tamar Kugler & J. Cole Smith & Terry Connolly & Young-Jun Son (ed.), Decision Modeling and Behavior in Complex and Uncertain Environments, pages 277-308, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gomes, P.F. & Fernandes, H.A. & Costa, A.A., 2022. "Topological transition in a coupled dynamics in random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Keywords

      Statistical and Nonlinear Physics;

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-100345-7. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.