IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v92y2019i7d10.1140_epjb_e2019-100006-y.html
   My bibliography  Save this article

Finite temperature phase transition in the two-dimensional Coulomb glass at low disorders

Author

Listed:
  • Preeti Bhandari

    (Jamia Millia Islamia)

  • Vikas Malik

    (Jaypee Institute of Information Technology)

Abstract

We present numerical evidence using Monte Carlo simulations of finite temperature phase transition in two dimensional Coulomb Glass lattice model with random site energies at half-filling. For the disorder strengths (W) studied in this paper, we find the existence of charge-ordered phase (COP) below the critical temperature (Tc(W)). Also, the probability distribution of staggered magnetization calculated at each W shows a two-peak structure at their respective critical temperature. Thus the phase transition from fluid to COP as a function of temperature is second order for all W. We find no evidence of a spin glass phase between a fluid and the COP. Further, we have used finite-size scaling analysis to calculate the critical exponents. The critical exponents at zero disorder are different from the one found at finite disorders, which indicates that the disorder is a relevant parameter here. The critical exponent for correlation length ν increases and Tc decreases with increasing disorder. Similar behaviour for ν was seen in the work of Overlin et al. for three dimensional Coulomb Glass model with a positional disorder. Our study also shows that other critical exponents are also a function of disorder. Graphical abstract

Suggested Citation

  • Preeti Bhandari & Vikas Malik, 2019. "Finite temperature phase transition in the two-dimensional Coulomb glass at low disorders," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(7), pages 1-6, July.
  • Handle: RePEc:spr:eurphb:v:92:y:2019:i:7:d:10.1140_epjb_e2019-100006-y
    DOI: 10.1140/epjb/e2019-100006-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2019-100006-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2019-100006-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:7:d:10.1140_epjb_e2019-100006-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.