IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v91y2018i5d10.1140_epjb_e2018-90028-6.html
   My bibliography  Save this article

Theoretical prediction of honeycomb carbon as Li-ion batteries anode material

Author

Listed:
  • Junping Hu

    (School of Science, Nanchang Institute of Technology)

  • Xiaohang Zhang

    (School of Science, Nanchang Institute of Technology)

Abstract

First principles calculations are performed to study the electronic properties and Li storage capability of honeycomb carbon. We find its right model consistent with the experimental result, the honeycomb carbon and its Li-intercalated configurations are all metallic which is beneficial to the electrode materials for lithium-ion batteries. The model 1 configuration shows fast Li diffusion and theoretical Li storage capacity of 319 mAh/g. Moreover, the average intercalation potentials for honeycomb carbon material is calculated to be low relatively. Our results suggest that the honeycomb carbon would be a new promising pure carbon anode material for Li-ion batteries.

Suggested Citation

  • Junping Hu & Xiaohang Zhang, 2018. "Theoretical prediction of honeycomb carbon as Li-ion batteries anode material," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(5), pages 1-5, May.
  • Handle: RePEc:spr:eurphb:v:91:y:2018:i:5:d:10.1140_epjb_e2018-90028-6
    DOI: 10.1140/epjb/e2018-90028-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2018-90028-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2018-90028-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Caiwei & Cao, Liyun & Huang, Jianfeng & Li, Jiayin & Kajiyoshi, Koji, 2021. "Divergent thinking and its application in biomass carbon electrode preparation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Senthil, Chenrayan & Lee, Chang Woo, 2021. "Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Carolina del Mar Saavedra Rios & Loïc Simonin & Arnaud de Geyer & Camelia Matei Ghimbeu & Capucine Dupont, 2020. "Unraveling the Properties of Biomass-Derived Hard Carbons upon Thermal Treatment for a Practical Application in Na-Ion Batteries," Energies, MDPI, vol. 13(14), pages 1-25, July.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:5:d:10.1140_epjb_e2018-90028-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.