IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v91y2018i12d10.1140_epjb_e2018-90497-5.html
   My bibliography  Save this article

Monte Carlo simulations of a disordered superconductor-metal quantum phase transition

Author

Listed:
  • Ahmed K. Ibrahim

    (Missouri University of Science and Technology)

  • Thomas Vojta

    (Missouri University of Science and Technology)

Abstract

We investigate the quantum phase transitions of a disordered nanowire from superconducting to metallic behavior by employing extensive Monte Carlo simulations. To this end, we map the quantum action onto a (1+1)-dimensional classical XY model with long-range interactions in imaginary time. We then analyze the finite-size scaling behavior of the order parameter susceptibility, the correlation time, the superfluid density, and the compressibility. We find strong numerical evidence for the critical behavior to be of infinite-randomness type and to belong to the random transverse-field Ising universality class, as predicted by a recent strong disorder renormalization group calculation. Graphical abstract

Suggested Citation

  • Ahmed K. Ibrahim & Thomas Vojta, 2018. "Monte Carlo simulations of a disordered superconductor-metal quantum phase transition," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-9, December.
  • Handle: RePEc:spr:eurphb:v:91:y:2018:i:12:d:10.1140_epjb_e2018-90497-5
    DOI: 10.1140/epjb/e2018-90497-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2018-90497-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2018-90497-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferenc Iglói & Cécile Monthus, 2018. "Strong disorder RG approach – a short review of recent developments," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(11), pages 1-25, November.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:12:d:10.1140_epjb_e2018-90497-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.