Author
Listed:
- Ashutosh Dubey
(School of Basic Sciences, Indian Institute of Technology Bhubaneswar)
- Malay Bandyopadhyay
(School of Basic Sciences, Indian Institute of Technology Bhubaneswar)
Abstract
In this paper, we investigate a Brownian motion (BM) with purely time dependent drift and diffusion by suggesting and examining several Brownian functionals, which characterize the stochastic model of water resources availability in snowmelt dominated regions with power law time dependent drift and diffusion. Snow melt process is modelled by a overdamped Langevin equation for a Brownian process with power law time dependent drift (μ(t) ~ qktα) and diffusion (D(t) ~ ktα) where they are proportional to each other. We introduce several probability distribution functions (PDFs) associated with such time dependent BMs. For instance, with initial starting value of snow amount H0, we derive analytical expressions for: (i) the PDF P(tf|H0) of the first passage time tf which specify the lifetime of such stochastic process, (ii) the PDF P(A|H0) of the area A till the first passage time and it provides us numerous valuable information about the average available water resources, (iii) the PDF P(M) associated with the maximum amount of available water M of the BM process before the complete melting of snow, and (iv) the joint PDF P(M;tm) of the maximum amount of available water M and its occurrence time tm before the first passage time. We further confirm our analytical predictions by computing the same PDFs with direct numerical simulations of the corresponding Langevin equation. We obtain a very good agreement of our theoretical predictions with the numerically simulated results. Finally, several nontrivial scaling behaviour in the asymptotic limits for the above mentioned PDFs are predicted, which can be verified further from experimental observation.
Suggested Citation
Ashutosh Dubey & Malay Bandyopadhyay, 2018.
"Study of Brownian functionals for a Brownian process model of snow melt dynamics with purely time dependent drift and diffusion,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(11), pages 1-12, November.
Handle:
RePEc:spr:eurphb:v:91:y:2018:i:11:d:10.1140_epjb_e2018-90222-6
DOI: 10.1140/epjb/e2018-90222-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:11:d:10.1140_epjb_e2018-90222-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.