Author
Listed:
- Balazs Pinter
(Departamento de Química, Universidad Técnica Federico Santa María
Duke University
Free University of Brussels (VUB))
- Rachael Al-Saadon
(Duke University)
- Zehua Chen
(Duke University)
- Weitao Yang
(Duke University
Duke University
Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University)
Abstract
The particle-particle random phase approximation (pp-RPA) has been deployed to study the spin-state energetics of transition metal (TM) complexes for the first time in this work. Namely, we designed and implemented a non-canonical reference pp-RPA protocol that is capable of capturing the singlet low-spin (LS) – triplet intermediate-spin (IS) excitation process of iron(II) complexes; herein we applied this method to iron-porphyrin related heme derivatives with clearly defined LS and IS electronic states. Coupled to the CAM-B3LYP functional and to Dunning-type basis sets, we utilized both the active-space and Davidson methods to solve the pp-RPA equation effectively to obtain vertical singlet–triplet excitation energies. Correcting these vertical metrics with a structural relaxation factor for each species, we evaluated the relative stability of LS and IS electronic states. Comparison of the pp-RPA results to established ab initio data revealed that pp-RPA describes well excitation energies and related relative spin state stabilities if the transition is based on non-bonding d-orbitals, such as complexes without an axial ligand in the investigated set of molecules. But it notably overestimates the stability of the singlet LS state to the triplet IS state in complexes, where the d-orbitals at which the excitation is centered have bonding or antibonding character.
Suggested Citation
Balazs Pinter & Rachael Al-Saadon & Zehua Chen & Weitao Yang, 2018.
"Spin-state energetics of iron(II) porphyrin from the particle-particle random phase approximation,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(11), pages 1-10, November.
Handle:
RePEc:spr:eurphb:v:91:y:2018:i:11:d:10.1140_epjb_e2018-90169-6
DOI: 10.1140/epjb/e2018-90169-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:11:d:10.1140_epjb_e2018-90169-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.