Author
Listed:
- Jun Chang
(College of Physics and Information Technology, Shaanxi Normal University
Institute of Theoretical Physics)
- Jize Zhao
(Institute of Applied Physics and Computational Mathematics)
Abstract
Since the discovery of the cuprate high-temperature superconductivity in 1986, a universal phase diagram has been constructed experimentally and numerous theoretical models have been proposed. However, there remains no consensus on the underlying physics thus far. Here, we theoretically investigate the phase diagram of hole-doped cuprates based on an itinerant-localized dual fermion model, with the charge carriers doped on the oxygen sites and localized holes on the copper d x2 − y2 orbitals. We analytically demonstrate that the puzzling anomalous normal state or the strange metal could simply stem from a free Fermi gas of carriers bathing in copper antiferromagnetic spin fluctuations. The short-range high-energy spin excitations also act as the “magnetic glue” of carrier Cooper pairs and induce d-wave superconductivity from the underdoped to overdoped regime, distinctly different from the conventional low-frequency magnetic fluctuation mechanism. We further sketch out the characteristic dome-shaped critical temperature T c versus doping level. The emergence of the pseudogap is ascribed to the localization of partial carriers coupled to the local copper moments or a crossover from the strange metal to a nodal Kondo-like insulator. Our work provides a consistent theoretical framework to understand the typical phase diagram of hole-doped cuprates and paves a distinct way to the studies of both non-Fermi liquid and unconventional superconductivity in strongly correlated systems.
Suggested Citation
Jun Chang & Jize Zhao, 2017.
"Theory of dual fermion superconductivity in hole-doped cuprates,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(8), pages 1-12, August.
Handle:
RePEc:spr:eurphb:v:90:y:2017:i:8:d:10.1140_epjb_e2017-80233-2
DOI: 10.1140/epjb/e2017-80233-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:90:y:2017:i:8:d:10.1140_epjb_e2017-80233-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.