IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v90y2017i10d10.1140_epjb_e2017-80076-9.html
   My bibliography  Save this article

Effects of combined harmonic and random excitations on a Brusselator model

Author

Listed:
  • Yong Xu

    (Northwestern Polytechnical University
    Potsdam Institute for Climate Impact Research
    Humboldt University Berlin)

  • Jinzhong Ma

    (Northwestern Polytechnical University)

  • Haiyan Wang

    (School of Marine Sciences, Northwestern Polytechnical University)

  • Yongge Li

    (Northwestern Polytechnical University)

  • Jürgen Kurths

    (Potsdam Institute for Climate Impact Research
    Humboldt University Berlin
    Institute of Applied Physics of the Russian Academy of Sciences)

Abstract

We discuss the constructive role of combined harmonic and random excitation on stochastic resonance (SR) in a Brusselator model. We first numerically investigate SR determined by the Signal-to-Noise Ratio (SNR) in this model. Effects of different parameters on SR are described in detail. Our simulation results show that the intensity of the Gaussian colored noise and the amplitude of the periodic force can enhance SR. Moreover, an analytical framework is presented for the SNR of the Brusselator model, leading to a theoretical expression of SNR. We observe a good agreement between the theoretical and numerical results, and the effectiveness of the proposed theoretical method is verified. This theoretical analysis provides a global view on how the dynamics of a periodically forced system with noise changes in the vicinity of a Hopf bifurcation.

Suggested Citation

  • Yong Xu & Jinzhong Ma & Haiyan Wang & Yongge Li & Jürgen Kurths, 2017. "Effects of combined harmonic and random excitations on a Brusselator model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(10), pages 1-7, October.
  • Handle: RePEc:spr:eurphb:v:90:y:2017:i:10:d:10.1140_epjb_e2017-80076-9
    DOI: 10.1140/epjb/e2017-80076-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2017-80076-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2017-80076-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bu, Min & Li, Jing & Guo, Rong & Ma, Jinzhong, 2023. "Dynamical responses of a Gaussian colored noise-driven shape memory alloy oscillator with a periodic force," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Guo, Yong-Feng & Wei, Fang & Xi, Bei & Tan, Jian-Guo, 2018. "The instability probability density evolution of the bistable system driven by Gaussian colored noise and white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 200-208.
    3. Lev Ryashko, 2023. "Analysis of Excitement Caused by Colored Noise in a Thermokinetic Model," Mathematics, MDPI, vol. 11(22), pages 1-11, November.
    4. Mbakob Yonkeu, R. & David, Afungchui, 2022. "Coherence and stochastic resonance in the fractional-birhythmic self-sustained system subjected to fractional time-delay feedback and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:90:y:2017:i:10:d:10.1140_epjb_e2017-80076-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.