IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v87y2014i8p1-610.1140-epjb-e2014-50171-8.html
   My bibliography  Save this article

Two-parametric fractional statistics models for anyons

Author

Listed:
  • Andrij Rovenchak

Abstract

In the paper, two-parametric models of fractional statistics are proposed in order to determine the functional form of the distribution function of free anyons. From the expressions of the second and third virial coefficients, an approximate correspondence is shown to hold for three models, namely, the nonadditive Polychronakos statistics and both the incomplete and the nonadditive modifications of the Haldane-Wu statistics. The difference occurs only in the fourth virial coefficient leading to a small correction in the equation of state. For the two generalizations of the Haldane-Wu statistics, the solutions for the statistics parameters g, q exist in the whole domain of the anyonic parameter α ∈ [0; 1], unlike the nonadditive Polychronakos statistics. It is suggested that the search for the expression of the anyonic distribution function should be made within some modifications of the Haldane-Wu statistics. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Andrij Rovenchak, 2014. "Two-parametric fractional statistics models for anyons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(8), pages 1-6, August.
  • Handle: RePEc:spr:eurphb:v:87:y:2014:i:8:p:1-6:10.1140/epjb/e2014-50171-8
    DOI: 10.1140/epjb/e2014-50171-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2014-50171-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2014-50171-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasiuta, Yanina & Rovenchak, Andrij, 2018. "Modeling free anyons at the bosonic and fermionic ends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 918-927.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:87:y:2014:i:8:p:1-6:10.1140/epjb/e2014-50171-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.