IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v84y2011i4p535-540.html
   My bibliography  Save this article

Motifs in co-authorship networks and their relation to the impact of scientific publications

Author

Listed:
  • L. Krumov
  • C. Fretter
  • M. Müller-Hannemann
  • K. Weihe
  • M. Hütt

Abstract

No abstract is available for this item.

Suggested Citation

  • L. Krumov & C. Fretter & M. Müller-Hannemann & K. Weihe & M. Hütt, 2011. "Motifs in co-authorship networks and their relation to the impact of scientific publications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 535-540, December.
  • Handle: RePEc:spr:eurphb:v:84:y:2011:i:4:p:535-540
    DOI: 10.1140/epjb/e2011-10746-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2011-10746-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2011-10746-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhananjay Kumar & Plaban Kumar Bhowmick & Sumana Dey & Debarshi Kumar Sanyal, 2023. "On the banks of Shodhganga: analysis of the academic genealogy graph of an Indian ETD repository," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 3879-3914, July.
    2. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    3. Alexey Lyutov & Yilmaz Uygun & Marc-Thorsten Hütt, 2021. "Machine learning misclassification of academic publications reveals non-trivial interdependencies of scientific disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1173-1186, February.
    4. Li, Jianyu & Zhou, Jie & Luo, Xiaoyue & Yang, Zhanxin, 2012. "Chinese lexical networks: The structure, function and formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5254-5263.
    5. Šubelj, Lovro & Fiala, Dalibor & Ciglarič, Tadej & Kronegger, Luka, 2019. "Convexity in scientific collaboration networks," Journal of Informetrics, Elsevier, vol. 13(1), pages 10-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:84:y:2011:i:4:p:535-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.