IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v69y2009i4p539-548.html
   My bibliography  Save this article

Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models

Author

Listed:
  • D. Helbing

Abstract

No abstract is available for this item.

Suggested Citation

  • D. Helbing, 2009. "Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(4), pages 539-548, June.
  • Handle: RePEc:spr:eurphb:v:69:y:2009:i:4:p:539-548
    DOI: 10.1140/epjb/e2009-00192-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2009-00192-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2009-00192-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended heterogeneous car-following model with the consideration of the drivers’ different psychological headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1113-1125.
    2. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    3. Rongjun, Cheng & Hongxia, Ge & Jufeng, Wang, 2018. "The nonlinear analysis for a new continuum model considering anticipation and traffic jerk effect," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 493-505.
    4. Peng, Guanghan & Xu, Mingzuo & Tan, Huili, 2024. "Phase transition in a new heterogeneous macro continuum model of traffic flow under rain and snow weather environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    5. Sun, Fengxin & Wang, Jufeng & Cheng, Rongjun, 2019. "An improved anisotropic continuum model considering the driver’s desire for steady driving," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1449-1462.
    6. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model considering the driver’s desire of driving smoothly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 119-129.
    7. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    8. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended car-following model considering the self-stabilizing driving behavior of headway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 347-357.
    9. Cheng, Rongjun & Ge, Hongxia & Sun, Fengxin & Wang, Jufeng, 2018. "An extended macro model accounting for acceleration changes with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 270-283.
    10. Fan, De-li & Zhang, Yi-cai & Shi, Yin & Xue, Yu & Wei, Fang-ping, 2018. "An extended continuum traffic model with the consideration of the optimal velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 402-413.
    11. Wang, Qingying & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model accounting for the effect of “backward looking” and flow integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 438-446.
    12. Sun, Fengxin & Chow, Andy H.F. & Lo, S.M. & Ge, Hongxia, 2018. "A two-lane lattice hydrodynamic model with heterogeneous lane changing rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 389-400.
    13. Qingtao, Zhai & Hongxia, Ge & Rongjun, Cheng, 2018. "An extended continuum model considering optimal velocity change with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 774-785.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:69:y:2009:i:4:p:539-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.