IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v63y2008i3p329-339.html
   My bibliography  Save this article

Predictive information and explorative behavior of autonomous robots

Author

Listed:
  • N. Ay
  • N. Bertschinger
  • R. Der
  • F. Güttler
  • E. Olbrich

Abstract

Measures of complexity are of immediate interest for the field of autonomous robots both as a means to classify the behavior and as an objective function for the autonomous development of robot behavior. In the present paper we consider predictive information in sensor space as a measure for the behavioral complexity of a two-wheel embodied robot moving in a rectangular arena with several obstacles. The mutual information (MI) between past and future sensor values is found empirically to have a maximum for a behavior which is both explorative and sensitive to the environment. This makes predictive information a prospective candidate as an objective function for the autonomous development of such behaviors. We derive theoretical expressions for the MI in order to obtain an explicit update rule for the gradient ascent dynamics. Interestingly, in the case of a linear or linearized model of the sensorimotor dynamics the structure of the learning rule derived depends only on the dynamical properties while the value of the MI influences only the learning rate. In this way the problem of the prohibitively large sampling times for information theoretic measures can be circumvented. This result can be generalized and may help to derive explicit learning rules from complexity theoretic measures. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Suggested Citation

  • N. Ay & N. Bertschinger & R. Der & F. Güttler & E. Olbrich, 2008. "Predictive information and explorative behavior of autonomous robots," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(3), pages 329-339, June.
  • Handle: RePEc:spr:eurphb:v:63:y:2008:i:3:p:329-339
    DOI: 10.1140/epjb/e2008-00175-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2008-00175-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2008-00175-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeffrey A Edlund & Nicolas Chaumont & Arend Hintze & Christof Koch & Giulio Tononi & Christoph Adami, 2011. "Integrated Information Increases with Fitness in the Evolution of Animats," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Christoph Salge & Daniel Polani, 2011. "Digested Information as an Information Theoretic Motivation for Social Interaction," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(1), pages 1-5.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:63:y:2008:i:3:p:329-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.