IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v57y2007i4p463-471.html
   My bibliography  Save this article

Application of thermodynamics to driven systems

Author

Listed:
  • R. Mahnke
  • J. Kaupužs
  • J. Hinkel
  • H. Weber

Abstract

Application of thermodynamics to driven systems is discussed. As particular examples, simple traffic flow models are considered. On a microscopic level, traffic flow is described by Bando's optimal velocity model in terms of accelerating and decelerating forces. It allows to introduce kinetic, potential, as well as total energy, which is the internal energy of the car system in view of thermodynamics. The latter is not conserved, although it has certain value in any of two possible stationary states corresponding either to fixed point or to limit cycle in the space of headways and velocities. On a mesoscopic level of description, the size n of car cluster is considered as a stochastic variable in master equation. Here n=0 corresponds to the fixed-point solution of the microscopic model, whereas the limit cycle is represented by coexistence of a car cluster with n > 0 and free flow phase. The detailed balance holds in a stationary state just like in equilibrium liquid-gas system. It allows to define free energy of the car system and chemical potentials of the coexisting phases, as well as a relaxation to a local or global free energy minimum. In this sense the behaviour of traffic flow can be described by equilibrium thermodynamics. We find, however, that the chemical potential of the cluster phase of traffic flow depends on an outer parameter — the density of cars in the free-flow phase. It allows to distinguish between the traffic flow as a driven system and purely equilibrium systems. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Suggested Citation

  • R. Mahnke & J. Kaupužs & J. Hinkel & H. Weber, 2007. "Application of thermodynamics to driven systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(4), pages 463-471, June.
  • Handle: RePEc:spr:eurphb:v:57:y:2007:i:4:p:463-471
    DOI: 10.1140/epjb/e2007-00182-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2007-00182-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2007-00182-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosun, Caglar & Ozdemir, Serhan, 2016. "A superstatistical model of vehicular traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 466-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:57:y:2007:i:4:p:463-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.