IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v56y2007i1p41-45.html
   My bibliography  Save this article

Limited resolution in complex network community detection with Potts model approach

Author

Listed:
  • J. M. Kumpula
  • J. Saramäki
  • K. Kaski
  • J. Kertész

Abstract

According to Fortunato and Barthélemy, modularity-based community detection algorithms have a resolution threshold such that small communities in a large network are invisible. Here we generalize their work and show that the q-state Potts community detection method introduced by Reichardt and Bornholdt also has a resolution threshold. The model contains a parameter by which this threshold can be tuned, but no a priori principle is known to select the proper value. Single global optimization criteria do not seem capable for detecting all communities if their size distribution is broad. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Suggested Citation

  • J. M. Kumpula & J. Saramäki & K. Kaski & J. Kertész, 2007. "Limited resolution in complex network community detection with Potts model approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(1), pages 41-45, March.
  • Handle: RePEc:spr:eurphb:v:56:y:2007:i:1:p:41-45
    DOI: 10.1140/epjb/e2007-00088-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2007-00088-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2007-00088-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Huawei & Cheng, Xueqi & Cai, Kai & Hu, Mao-Bin, 2009. "Detect overlapping and hierarchical community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1706-1712.
    2. Moreno, Felipe & Davis, Sergio & Loyola, Claudia & Peralta, Joaquín, 2018. "Ordered metastable states in the Potts model and their connection with the superheated solid state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 361-368.
    3. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    4. de Arruda, Guilherme F. & Costa, Luciano da Fontoura & Rodrigues, Francisco A., 2012. "A complex networks approach for data clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6174-6183.
    5. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    6. Xiang, Ju & Tang, Yan-Ni & Gao, Yuan-Yuan & Zhang, Yan & Deng, Ke & Xu, Xiao-Ke & Hu, Ke, 2015. "Multi-resolution community detection based on generalized self-loop rescaling strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 127-139.
    7. Elisa Letizia & Paolo Barucca & Fabrizio Lillo, 2018. "Resolution of ranking hierarchies in directed networks," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-25, February.
    8. Cui, Yaozu & Wang, Xingyuan & Li, Junqiu, 2014. "Detecting overlapping communities in networks using the maximal sub-graph and the clustering coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 85-91.
    9. Liu, Xu & Forrest, Jeffrey Yi-Lin & Luo, Qiang & Yi, Dong-Yun, 2012. "Detecting community structure using biased random merging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1797-1810.
    10. Qiming Lu & G. Korniss & Boleslaw Szymanski, 2009. "The Naming Game in social networks: community formation and consensus engineering," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(2), pages 221-235, November.
    11. Shen, Yi & Pei, Wenjiang & Wang, Kai & Li, Tao & Wang, Shaoping, 2008. "Recursive filtration method for detecting community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6663-6670.
    12. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.
    13. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    14. Weihua Zhan & Jihong Guan & Zhongzhi Zhang, 2017. "A New Method for Extracting the Hierarchical Organization of Networks," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1359-1385, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:56:y:2007:i:1:p:41-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.