IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v53y2006i4p487-501.html
   My bibliography  Save this article

Lynden-Bell and Tsallis distributions for the HMF model

Author

Listed:
  • P. H. Chavanis

Abstract

Systems with long-range interactions can reach a Quasi Stationary State (QSS) as a result of a violent collisionless relaxation. If the system mixes well (ergodicity), the QSS can be predicted by the statistical theory of Lynden-Bell (1967) based on the Vlasov equation. When the initial condition takes only two values, the Lynden-Bell distribution is similar to the Fermi-Dirac statistics. Such distributions have recently been observed in direct numerical simulations of the HMF model (Antoniazzi et al. 2006). In this paper, we determine the caloric curve corresponding to the Lynden-Bell statistics in relation with the HMF model and analyze the dynamical and thermodynamical stability of spatially homogeneous solutions by using two general criteria previously introduced in the literature. We express the critical energy and the critical temperature as a function of a degeneracy parameter fixed by the initial condition. Below these critical values, the homogeneous Lynden-Bell distribution is not a maximum entropy state but an unstable saddle point. Known stability criteria corresponding to the Maxwellian distribution and the water-bag distribution are recovered as particular limits of our study. In addition, we find a critical point below which the homogeneous Lynden-Bell distribution is always stable. We apply these results to the situation considered in Antoniazzi et al. For a given energy, we find a critical initial magnetization above which the homogeneous Lynden-Bell distribution ceases to be a maximum entropy state. For an energy U=0.69, this transition occurs above an initial magnetization M x =0.897. In that case, the system should reach an inhomogeneous Lynden-Bell distribution (most mixed) or an incompletely mixed state (possibly fitted by a Tsallis distribution). Thus, our theoretical study proves that the dynamics is different for small and large initial magnetizations, in agreement with numerical results of Pluchino et al. (2004). This new dynamical phase transition may reconcile the two communities by showing that they study different regimes. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Suggested Citation

  • P. H. Chavanis, 2006. "Lynden-Bell and Tsallis distributions for the HMF model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(4), pages 487-501, October.
  • Handle: RePEc:spr:eurphb:v:53:y:2006:i:4:p:487-501
    DOI: 10.1140/epjb/e2006-00405-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2006-00405-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2006-00405-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atenas, Boris & Curilef, Sergio, 2021. "A statistical description for the Quasi-Stationary-States of the dipole-type Hamiltonian Mean Field Model based on a family of Vlasov solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:53:y:2006:i:4:p:487-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.