IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v53y2006i3p367-374.html
   My bibliography  Save this article

Analysis of stability and density waves of traffic flow model in an ITS environment

Author

Listed:
  • Z.-P. Li
  • Y.-C. Liu

Abstract

By introducing relative velocities of arbitrary number of cars ahead into the full velocity difference models (FVDM), we present a forward looking relative velocity model (FLRVM) of cooperative driving control system. To our knowledge, the model is an improvement over the similar extension in the forward looking optimal velocity models (FLOVM), because it is more reasonable and realistic in implement of incorporating intelligent transportation system in traffic. Then the stability criterion is investigated by the linear stability analysis with finding that new consideration theoretically lead to the improvement of the stability of traffic flow, and the validity of our theoretical analysis is confirmed by direct simulations. In addition, nonlinear analysis of the model shows that the three waves: triangular shock wave, soliton wave and kink-antikink wave appear respectively in stable, metastable and unstable regions. These correspond to the solutions of the Burgers equation, Korteweg-de Vries (KdV) equation and modified Korteweg-de Vries (mKdV) equation. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Suggested Citation

  • Z.-P. Li & Y.-C. Liu, 2006. "Analysis of stability and density waves of traffic flow model in an ITS environment," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 367-374, October.
  • Handle: RePEc:spr:eurphb:v:53:y:2006:i:3:p:367-374
    DOI: 10.1140/epjb/e2006-00382-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2006-00382-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2006-00382-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziwen Song & Feng Sun & Rongji Zhang & Yingcui Du & Guiliang Zhou, 2021. "An Improved Cellular Automaton Traffic Model Based on STCA Model Considering Variable Direction Lanes in I-VICS," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    2. Junyan Han & Jinglei Zhang & Xiaoyuan Wang & Yaqi Liu & Quanzheng Wang & Fusheng Zhong, 2020. "An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment," Future Internet, MDPI, vol. 12(12), pages 1-15, November.
    3. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:53:y:2006:i:3:p:367-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.