IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v45y2005i3p391-397.html
   My bibliography  Save this article

Resonant activation in a stochastic Hodgkin-Huxley model: Interplay between noise and suprathreshold driving effects

Author

Listed:
  • E. V. Pankratova
  • A. V. Polovinkin
  • E. Mosekilde

Abstract

The paper considers an excitable Hodgkin-Huxley system subjected to a strong periodic forcing in the presence of random noise. The influence of the forcing frequency on the response of the system is examined in the realm of suprathreshold amplitudes. Our results confirm that the presence of noise has a detrimental effect on the neuronal response. Fluctuations can induce significant delays in the detection of an external signal. We demonstrate, however, that this negative influence may be minimized by a resonant activation effect: Both the mean escape time and its standard deviation exhibit a minimum as functions of the forcing frequency. The destructive influence of noise on the interspike interval can also be reduced. With driving signals in a certain frequency range, the system can show stable periodic spiking even for relatively large noise intensities. Outside this frequency range, noise of similar intensity destroys the regularity of the spike trains by suppressing the generation of some of the spikes. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Suggested Citation

  • E. V. Pankratova & A. V. Polovinkin & E. Mosekilde, 2005. "Resonant activation in a stochastic Hodgkin-Huxley model: Interplay between noise and suprathreshold driving effects," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 45(3), pages 391-397, June.
  • Handle: RePEc:spr:eurphb:v:45:y:2005:i:3:p:391-397
    DOI: 10.1140/epjb/e2005-00187-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2005-00187-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2005-00187-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreev, Andrey V. & Ivanchenko, Mikhail V. & Pisarchik, Alexander N. & Hramov, Alexander E., 2020. "Stimulus classification using chimera-like states in a spiking neural network," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Wang, Min & Fang, Yuwen & Luo, Yuhui & Yang, Fengzao & Zeng, Chunhua & Duan, Wei-Long, 2019. "Influence of non-Gaussian noise on the coherent feed-forward loop with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 46-55.
    3. Yao, Chenggui & Sun, JianQiang & Jin, Jun & Shuai, Jianwei & Li, Xiang & Yao, Yuangen & Xu, Xufan, 2023. "The power law statistics of the spiking timing in a neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Baysal, Veli & Yılmaz, Ergin, 2021. "Chaotic Signal Induced Delay Decay in Hodgkin-Huxley Neuron," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Yilmaz, Ergin, 2014. "Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 1-8.
    6. Uzuntarla, Muhammet & Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut & Perc, Matjaž, 2013. "Noise-delayed decay in the response of a scale-free neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 202-208.
    7. Xiao, Fangli & Fu, Ziying & Jia, Ya & Yang, Lijian, 2023. "Resonance effects in neuronal-astrocyte model with ion channel blockage," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:45:y:2005:i:3:p:391-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.