IDEAS home Printed from https://ideas.repec.org/a/spr/etbull/v3y2015i2d10.1007_s40505-014-0061-5.html
   My bibliography  Save this article

Testing stochastic rationality and predicting stochastic demand: the case of two goods

Author

Listed:
  • Stefan Hoderlein

    (Boston College)

  • Jörg Stoye

    (Cornell University)

Abstract

This paper precisely delineates the empirical content of consumer rationality in the following setting: Data are from a repeated cross section; unobserved heterogeneity is completely unrestricted; however, there are only two goods. Simple closed-form expressions determine whether (population level) data are consistent with these assumptions. Bounds on counterfactual distributions of demand, and parameters thereof, follow. A striking finding is that any rationalizable collection of cross-sectional distributions can be rationalized by pretending that the ordering of individual consumers on the budget line is maintained across budgets. Hence, this seemingly strong assumption does not tighten the bounds.

Suggested Citation

  • Stefan Hoderlein & Jörg Stoye, 2015. "Testing stochastic rationality and predicting stochastic demand: the case of two goods," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 313-328, October.
  • Handle: RePEc:spr:etbull:v:3:y:2015:i:2:d:10.1007_s40505-014-0061-5
    DOI: 10.1007/s40505-014-0061-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40505-014-0061-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40505-014-0061-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    2. Hoderlein, Stefan & Klemelä, Jussi & Mammen, Enno, 2010. "Analyzing The Random Coefficient Model Nonparametrically," Econometric Theory, Cambridge University Press, vol. 26(3), pages 804-837, June.
    3. Walter Beckert & Richard Blundell, 2008. "Heterogeneity and the Non-Parametric Analysis of Consumer Choice: Conditions for Invertibility," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(4), pages 1069-1080.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. Richard Blundell & Martin Browning & Laurens Cherchye & Ian Crawford & Bram De Rock & Frederic Vermeulen, 2015. "Sharp for SARP: Nonparametric Bounds on Counterfactual Demands," American Economic Journal: Microeconomics, American Economic Association, vol. 7(1), pages 43-60, February.
    6. Arthur Lewbel, 2001. "Demand Systems with and without Errors," American Economic Review, American Economic Association, vol. 91(3), pages 611-618, June.
    7. Jerry A. Hausman & Whitney K. Newey, 2016. "Individual Heterogeneity and Average Welfare," Econometrica, Econometric Society, vol. 84, pages 1225-1248, May.
    8. Hoderlein, Stefan, 2011. "How many consumers are rational?," Journal of Econometrics, Elsevier, vol. 164(2), pages 294-309, October.
    9. Mette Christensen, 2014. "Heterogeneity in Consumer Demands and the Income Effect: Evidence from Panel Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 116(2), pages 335-355, April.
    10. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2013. "Nonparametric estimation of a heterogeneous demand function under the Slutsky inequality restriction," CeMMAP working papers CWP54/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2012. "Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation," Quantitative Economics, Econometric Society, vol. 3(1), pages 29-51, March.
    12. Sam Cosaert & Thomas Demuynck, 2018. "Nonparametric Welfare and Demand Analysis with Unobserved Individual Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 349-361, May.
    13. Jörg Stoye, 2010. "Partial identification of spread parameters," Quantitative Economics, Econometric Society, vol. 1(2), pages 323-357, November.
    14. Yuichi Kitamura & Jörg Stoye, 2013. "Nonparametric analysis of random utility models: testing," CeMMAP working papers 36/13, Institute for Fiscal Studies.
    15. Barbera, Salvador & Pattanaik, Prasanta K, 1986. "Falmagne and the Rationalizability of Stochastic Choices in Terms of Random Orderings," Econometrica, Econometric Society, vol. 54(3), pages 707-715, May.
    16. Bandyopadhyay, Taradas & Bandyopadhyay, Bandyopadhyay & Pattanaik, Prasanta K., 2002. "Demand Aggregation and the Weak Axiom of Stochastic Revealed Preference," Journal of Economic Theory, Elsevier, vol. 107(2), pages 483-489, December.
    17. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    18. Blundell, Richard & Kristensen, Dennis & Matzkin, Rosa, 2014. "Bounding quantile demand functions using revealed preference inequalities," Journal of Econometrics, Elsevier, vol. 179(2), pages 112-127.
    19. Richard Blundell & Martin Browning & Ian Crawford, 2008. "Best Nonparametric Bounds on Demand Responses," Econometrica, Econometric Society, vol. 76(6), pages 1227-1262, November.
    20. Matthew Polisson & John K.-H. Quah, 2013. "Revealed Preference in a Discrete Consumption Space," American Economic Journal: Microeconomics, American Economic Association, vol. 5(1), pages 28-34, February.
    21. Mette Lunde Christensen, 2002. "Heterogeneity in consumer demands and the income effect: evidence from panel data," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 C4-1, International Conferences on Panel Data.
    22. Stefan Hoderlein & Jörg Stoye, 2014. "Revealed Preferences in a Heterogeneous Population," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 197-213, May.
    23. Hugh Rose, 1958. "Consistency of Preference: The Two-Commodity Case," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 124-125.
    24. Charles F. Manski, 2014. "Identification of income–leisure preferences and evaluation of income tax policy," Quantitative Economics, Econometric Society, vol. 5, pages 145-174, March.
    25. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    26. Charles F. Manski, 2007. "Partial Identification Of Counterfactual Choice Probabilities," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1393-1410, November.
    27. Haag, Berthold R. & Hoderlein, Stefan & Pendakur, Krishna, 2009. "Testing and imposing Slutsky symmetry in nonparametric demand systems," Journal of Econometrics, Elsevier, vol. 153(1), pages 33-50, November.
    28. Taradas Bandyopadhyay & Indraneel Dasgupta & Prasanta Pattanaik, 2004. "A general revealed preference theorem for stochastic demand behavior," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(3), pages 589-599, March.
    29. Daniel McFadden, 2005. "Revealed stochastic preference: a synthesis," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 245-264, August.
    30. James Andreoni & John Miller, 2002. "Giving According to GARP: An Experimental Test of the Consistency of Preferences for Altruism," Econometrica, Econometric Society, vol. 70(2), pages 737-753, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam Cosaert & Thomas Demuynck, 2018. "Nonparametric Welfare and Demand Analysis with Unobserved Individual Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 349-361, May.
    2. Yuichi Kitamura & Jörg Stoye, 2013. "Nonparametric analysis of random utility models: testing," CeMMAP working papers 36/13, Institute for Fiscal Studies.
    3. Changkuk Im & John Rehbeck, 2021. "Non-rationalizable Individuals, Stochastic Rationalizability, and Sampling," Papers 2102.03436, arXiv.org, revised Oct 2021.
    4. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    5. Richard Blundell & Dennis Kristensen & Rosa Matzkin, 2017. "Individual counterfactuals with multidimensional unobserved heterogeneity," CeMMAP working papers CWP60/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Im, Changkuk & Rehbeck, John, 2022. "Non-rationalizable individuals and stochastic rationalizability," Economics Letters, Elsevier, vol. 219(C).
    7. Adams-Prassl, Abigail, 2019. "Mutually Consistent Revealed Preference Demand Predictions," CEPR Discussion Papers 13580, C.E.P.R. Discussion Papers.
    8. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2022. "Optimal Decision Rules when Payoffs are Partially Identified," Papers 2204.11748, arXiv.org, revised May 2023.
    9. Charles F. Manski, 2014. "Identification of income–leisure preferences and evaluation of income tax policy," Quantitative Economics, Econometric Society, vol. 5, pages 145-174, March.
    10. Sebastiaan Maes & Raghav Malhotra, 2023. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," Papers 2303.01231, arXiv.org, revised Nov 2023.
    11. Yuichi Kitamura & Jorg Stoye, 2019. "Nonparametric Counterfactuals in Random Utility Models," Papers 1902.08350, arXiv.org, revised May 2019.
    12. Sebastiaan Maes & Raghav Malhotra, 2024. "Beyond the Mean: Testing Consumer Rationality through Higher Moments of Demand," Papers 2407.01538, arXiv.org.
    13. Roy Allen & John Rehbeck, 2020. "Counterfactual and Welfare Analysis with an Approximate Model," Papers 2009.03379, arXiv.org.
    14. Stoye, Jörg, 2019. "Revealed Stochastic Preference: A one-paragraph proof and generalization," Economics Letters, Elsevier, vol. 177(C), pages 66-68.
    15. Ian Crawford & Matthew Polisson, 2015. "Demand Analysis with Partially Observed Prices," Discussion Papers in Economics 15/12, Division of Economics, School of Business, University of Leicester, revised Dec 2016.
    16. Maes, Sebastiaan & Malhotra, Raghav, 2024. "Beyond the Mean : Testing Consumer Rationality through Higher Moments of Demand," CRETA Online Discussion Paper Series 85, Centre for Research in Economic Theory and its Applications CRETA.
    17. Daniele Caliari & Henrik Petri, 2024. "Irrational Random Utility Models," Papers 2403.10208, arXiv.org.
    18. Allen, Roy & Dziewulski, Paweł & Rehbeck, John, 2022. "Making sense of monkey business: Re-examining tests of animal rationality," Journal of Economic Behavior & Organization, Elsevier, vol. 196(C), pages 220-228.
    19. Hubner, Stefan, 2023. "Identification of unobserved distribution factors and preferences in the collective household model," Journal of Econometrics, Elsevier, vol. 234(1), pages 301-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam Cosaert & Thomas Demuynck, 2018. "Nonparametric Welfare and Demand Analysis with Unobserved Individual Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 349-361, May.
    2. Cherchye, Laurens & Demuynck, Thomas & Rock, Bram De, 2019. "Bounding counterfactual demand with unobserved heterogeneity and endogenous expenditures," Journal of Econometrics, Elsevier, vol. 211(2), pages 483-506.
    3. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    4. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    5. Ian Crawford & Matthew Polisson, 2015. "Demand analysis with partially observed prices," IFS Working Papers W15/16, Institute for Fiscal Studies.
    6. Yuichi Kitamura & Jörg Stoye, 2013. "Nonparametric analysis of random utility models: testing," CeMMAP working papers 36/13, Institute for Fiscal Studies.
    7. Sam Cosaert & Thomas Demuynck, 2015. "Revealed preference theory for finite choice sets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 169-200, May.
    8. Adams-Prassl, Abigail, 2019. "Mutually Consistent Revealed Preference Demand Predictions," CEPR Discussion Papers 13580, C.E.P.R. Discussion Papers.
    9. Cherchye, Laurens & Demuynck, Thomas & De Rock, Bram, 2018. "Transitivity of preferences: when does it matter?," Theoretical Economics, Econometric Society, vol. 13(3), September.
    10. Richard Blundell & Dennis Kristensen & Rosa Matzkin, 2017. "Individual counterfactuals with multidimensional unobserved heterogeneity," CeMMAP working papers 60/17, Institute for Fiscal Studies.
    11. Takashi Kunimoto & Roberto Serrano, 2020. "Rationalizable Incentives: Interim Implementation of Sets in Rationalizable Strategies," Working Papers 2020-15, Brown University, Department of Economics.
    12. Aguiar, Victor H. & Hjertstrand, Per & Serrano, Roberto, 2020. "A Rationalization of the Weak Axiom of Revealed Preference," Working Paper Series 1321, Research Institute of Industrial Economics.
    13. Blundell, Richard & Kristensen, Dennis & Matzkin, Rosa, 2014. "Bounding quantile demand functions using revealed preference inequalities," Journal of Econometrics, Elsevier, vol. 179(2), pages 112-127.
    14. Abi Adams & Richard Blundell & Martin Browning & Ian Crawford, 2015. "Prices versus preferences: taste change and revealed preference," IFS Working Papers W15/11, Institute for Fiscal Studies.
    15. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    16. Laurens Cherchye & Thomas Demuynck & Bram De Rock, 2013. "Nash‐Bargained Consumption Decisions: A Revealed Preference Analysis," Economic Journal, Royal Economic Society, vol. 123, pages 195-235, March.
    17. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Frederic Vermeulen, 2017. "Household Consumption When the Marriage Is Stable," American Economic Review, American Economic Association, vol. 107(6), pages 1507-1534, June.
    18. Kawaguchi, Kohei, 2017. "Testing rationality without restricting heterogeneity," Journal of Econometrics, Elsevier, vol. 197(1), pages 153-171.
    19. Dieter Saelens, 2022. "Unitary or collective households? A nonparametric rationality and separability test using detailed data on consumption expenditures and time use," Empirical Economics, Springer, vol. 62(2), pages 637-677, February.
    20. Jerry A. Hausman & Whitney K. Newey, 2016. "Individual Heterogeneity and Average Welfare," Econometrica, Econometric Society, vol. 84, pages 1225-1248, May.

    More about this item

    Keywords

    Revealed preference; Stochastic demand; Random utility models; Integrability of demand;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:etbull:v:3:y:2015:i:2:d:10.1007_s40505-014-0061-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.