IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v39y2019i4d10.1007_s10669-019-09719-1.html
   My bibliography  Save this article

In silico macro-imagineering of Salton Sea alternative futures under climate uncertainty and water transfer considerations

Author

Listed:
  • Michael E. Kjelland

    (U.S. Army Engineer Research and Development Center - U.S. Army Corps of Engineers
    Mayville State University
    Conservation, Genetics & Biotech, LLC)

  • Richard B. Cathcart

    (Geographos)

  • Todd M. Swannack

    (U.S. Army Engineer Research and Development Center - U.S. Army Corps of Engineers
    Texas State University)

Abstract

The aim of the present research was to simulate the Salton Sea elevation, volume, and total dissolved solids (TDS) to assess 34 different scenarios through the year 2024 in order to better evaluate the effects of potential water management scenarios. Parameterization of an existing Salton Sea simulation model, i.e., Salton Sea Stochastic Simulation Model (S4M), was performed to account for either an increase (+), decrease (−), or no change in precipitation (Pi), evapotranspiration (Eto), and river flow volume (Ri) in the Salton Sea Basin while simultaneously implementing two different water management policies: (1) water transfers to the Salton Sea end after 2017 (based on the Quantification Settlement Agreement (QSA)) or (2) water transfers to the Salton Sea at 2017 levels continue into the future. The S4M is formulated as a compartment model based on difference equations with a daily time step using STELLA® 8.0 software. One-way analysis of variance (ANOVA) and Bonferroni multiple post hoc statistical tests were performed using IBM® SPSS® Statistics v. 22.0 with α (Type I error) = 0.05. A significant difference existed between the Baseline scenario with water transfers ending in 2017, i.e., − 241 feet above sea level (fasl) and about 69,000 ppm TDS, and the scenario with continued water transfers at 2017 levels, i.e., year 2024 end simulation of − 236.95 fasl and 61,000 ppm TDS. The results indicate that in order to improve conditions for fish and keep salinity ≤ 50,000 ppm, continued QSA water transfers cannot achieve such a result alone, ceteris paribus.

Suggested Citation

  • Michael E. Kjelland & Richard B. Cathcart & Todd M. Swannack, 2019. "In silico macro-imagineering of Salton Sea alternative futures under climate uncertainty and water transfer considerations," Environment Systems and Decisions, Springer, vol. 39(4), pages 409-418, December.
  • Handle: RePEc:spr:envsyd:v:39:y:2019:i:4:d:10.1007_s10669-019-09719-1
    DOI: 10.1007/s10669-019-09719-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-019-09719-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-019-09719-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary A. Collier & James H. Lambert & Igor Linkov, 2019. "Innovation of risk analytics for technology and society," Environment Systems and Decisions, Springer, vol. 39(4), pages 369-370, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:39:y:2019:i:4:d:10.1007_s10669-019-09719-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.