IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v29y2009i4d10.1007_s10669-008-9212-2.html
   My bibliography  Save this article

Estimation of “environmentally sensitive” dispersal ratios for chemical dispersants used in crude oil spill control

Author

Listed:
  • Adebayo A. Otitoloju

    (University of Lagos, Akoka)

  • Temitope O. Popoola

    (University of Lagos, Akoka)

Abstract

The toxicities of two dispersants (Biosolve and OSD 9460), Forcados light crude oil and their mixtures based on ratios 6:1, 9:1, and 12:1 (v/v) were evaluated against the juvenile stage of African catfish, Clarias gariepinus, in laboratory bioassays. On the basis of the derived toxicity indices, Biosolve (96-h LC50 = 0.211 μl/l) was found to be about 27,284 times more toxic than crude oil (96-h LC50 = 5.757 ml/l) and 6,450 times more toxic than OSD 9460 (96-h LC50 = 1.361 ml/l). OSD 9460 was also found to be four times more toxic than crude oil when acting alone against C. gariepinus. Toxicity evaluations of the mixtures of crude oil/dispersants mixtures varied, depending largely upon the proportion of addition of the mixture components. The interactions between mixture of crude oil and Biosolve at the test ratios of 6:1, 9:1, and 12:1 were found to conform with the model of synergism (SR = 7,655, 14,876, and 8,792, respectively), and the mixtures were therefore more toxic than the crude oil acting singly. Similarly, the interactions between mixture of crude oil and OSD 9460 at the test ratios of 6:1 and 9:1 also conformed to the model of synergism (SR = 2.2 and 1.84, respectively). Interactions between the dispersant OSD 9460 and the crude oil at test ratio 12:1, however, conformed to the model of antagonism (SR = 0.84), indicating that the mixture was less toxic than crude oil acting alone. The results of the emulsification potential of OSD 9460 and Biosolve [measured in terms of optical transmittance (%)] prepared at the dispersal ratios 6:1, 9:1, and 12:1 revealed that the dispersal ratio of 6:1 achieved the highest emulsification of the crude oil with optical transmittance value of 4% and 6%, respectively. Estimation of an “environmentally sensitive” dispersal ratio for OSD 9460 and Biosolve revealed the optimum dispersal ratio for OSD 9460 range between ratios 7.5:1 and 9:1, while for Biosolve such an optimum dispersal ratio was indeterminate within the range of test dispersal ratios. The implications of these results in setting manufacturer’s and regulatory dispersal ratios for chemical dispersants used for oil spill control were discussed.

Suggested Citation

  • Adebayo A. Otitoloju & Temitope O. Popoola, 2009. "Estimation of “environmentally sensitive” dispersal ratios for chemical dispersants used in crude oil spill control," Environment Systems and Decisions, Springer, vol. 29(4), pages 371-380, December.
  • Handle: RePEc:spr:envsyd:v:29:y:2009:i:4:d:10.1007_s10669-008-9212-2
    DOI: 10.1007/s10669-008-9212-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-008-9212-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-008-9212-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:29:y:2009:i:4:d:10.1007_s10669-008-9212-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.